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CHAPTER I

Motion of a projectile, neglecting the
resistance of the air

§ 1. The resistance of the air will be neglected in our pre-
liminary investigation. Let the origin O be taken as the centre of
the muzzle of the gun and the velocity of the shell at the point O
be v, and let its direction make an angle ¢ with the horizon; ¢ is
called the “angle of departure”; the vertical plane through the
initial tangent is called the “plane of fire.”
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This plane of fire through O is taken as the plane of the coordi-
nate axes; and the axes of # and y are the horizontal and vertical

lines through O in this plane.

Suppose the centre of gravity of the body after ¢ seconds, reckoned
from O, to be at the point (zy), and to have a velocity v in the path

C. 1
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2 Motion of a prajectile, [cH. 1

in a direction making an angle € with the horizontal. Then in the
ascending branch of the trajectory, & is positive, and diminishes to
zero. At the vertex 0=0, while in the descending branch of the
trajectory, 6 is negative.

At the end of the trajectory, 8 = 0, =360 — w, where w is the
“acute angle of descent”; and there y=0,2=X,v=v,, t="T.

A’z _ dy
Now i 0, and =9
and initially (% = 9, COS ¢, %—‘Z =17, sin ¢.
Therefore x=1v,008 .t =1t } . @
y=v,sin¢.t—sgtt=wt—Lgt2}’ T
x?
whence we get y=axtan¢g— Thoodg ' 2

(where h= iy
29

The vertex, with coordinates a,, ¥, is the point where the tangent
of the flight path is horizontal, so that %’ or tan 8 =0.

Now tan9=tan¢—%£87¢-,

); this 1s the equation of a parabola with vertical axis.

50 that 2, =2k cos ¢ sin ¢ = h sin 2¢ ; and thence from (2), y, = A sin® ¢.
The average height y,, at which the shell is found is ST J' ydt,

or % j ydx. Both values are equal to ,.

The total range of the shell is given by (2) as X = 24 sin 2¢.

The greatest range, for given initial velocity v, or given value of
h, will then be obtained when sin 2¢ is greatest, that is when ¢ =4 ;
this fact was verified approximately by Tartaglia from experiment.

The velocity v of the projectile after the time ¢ is given by

#= () + (&)

=v? cos? ¢ + (v, 8in ¢ — gt)* = v + g°¢* — Qvggt;

and since y=wvt—3gt5, and h= v ,
29

therefore =2g (3 —ut+3 gt2)

Therefore v?=2g (h —y).
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§ 2] neglecting the resistance of the air 3

Thus the velocity of the body at the point (zy), or after the time
¢, is the same as if the body fell freely through the distance k — .
The time of flight, that is, the time the body requires to reach the

point (zy) is, according to (1), t = woos g’
In particular, the time required to describe the horizontal range
OW of the trajectory is
OW  4hsing _ 2v.,sin¢_T
vweosp v, g
Substitute the value v,8in ¢ =4¢7T in the second equation of (1),
and it follows that
y=13gt(T-1).

When ¢ =317, then on account of the symmetry of the parabola
about the vertex ordinate, y has the value y, of the vertex height,
and

¥, = 3977 =12261% (g = 9808 m/sec?).

This formula is frequently useful for motion in the air, and is
called in Germany Haupt’s formula, in England Sladen’s formula;
but it is nothing more than an approximation in actual practice.

Further relations can be obtained if we imagine a family of
trajectories to be drawn, and study the common properties that con-
nect the various trajectories.

§ 2. Family of trajectories for constant initial velocity.

An unlimited number of parabolic paths may lie in the same
vertical plane, with the same point O as origin, and the same initial
velocity. This series of curves is obtained when the angle of de-
parture ¢ is made to assume a series of values.

First, let two parabolas of the series be taken, so related that both

shall pass through the same point (zy).
We had before
at 1

— & 24 - .
y=wtand 4hcos2¢’and cos*$ 1+ tan®¢’

and with tan ¢ =z, we have
4hy + 2® — dhaz + 2%* = 0,

therefore z=tan ¢ = QEh + —1‘75 V(dh? — dhy — &%), ...l 3)

1—2
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4 Motion of a projectile, [oH. 1

The double sign shows that the same target can be hit in two

ways, with the same initial velocity v, and with the same value of

..m2 .
h=%‘¢. The two angles of departure, ¢, and ¢,, are determined

from (3); the one constitutes flat or direct fire, the other, curved or
indirect fire..

A relation between ¢, and ¢, will be given later, but first we
must consider more closely the two solutions of (8).

Obviously there are then two angles of fire ¢, when the radical
in (3) is real, that is, when 4A* > 4hy + 22 but when (zy) lies so that
4h? < 4hy + «*, there is no real angle of departure ¢ with which the
point (zy) can be hit.

The complete plane thus splits into two parts; in the one part a
point (zy) lies that can be hit in two ways; in the other part there
is no point with this property. .

The two parts are separated by the curve which has the equation

4h? = 4hy + o7,

and this determines the locus of points in the plane that can be hit
in one way only, and for which the direct and indirect fire coincide.

This curve is a parabola, with focus at O. Replace y by 2+ y';
then the equation of the curve becomes

42 = 4h (h — ') + 22, or *=4hy,

and this proves that the curve is a parabola, with vertex at 0,, focus
at 0, and axis vertical in consequence.
Therefore this parabola

Ah2 = Ay 4+ 22 v (4)

represents the envelope of all the parabolic paths of the given family.
Take the equation of the parabola of flight (2) in the form

z? .
m—4hxtan¢+4hy= 0,
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§ 2] neglecting the resistance of the air
and differentiate with respect to ¢ ; therefore

2cossing ,  dhz
cost ¢ cos® ¢

or tan qS = —;
. ?
hence we obtain

z"(l+‘%hz)—4h%m+4h_y=0,

or  + 4h* — 8h* 4 4hy =0,
or 413 = 4hy + 27,
as before.

So far the treatment has been restricted to the movement in a
vertical plane; but if we consider it in space with all possible angles
of departure ¢ with same initial velocity v, then all the collective
trajectories are enveloped by a paraboloid of revolution, with vertex
at 0, and focus at O.

Returning to the relations in one plane of fire, let us enquire as to
what is the geometrical locus of the focus and vertex of all the para-
bolas of the family.

The original equation (2) of the parabola of flight

y:xta‘nqs_L

4h cos® ¢

can be written in the form

7 v2)=’ 2v,2 ( v;)
r——)==""{y—- 1],
( g g \Y " gy

where, as above, v, = v,cos ¢, v, =¥, sin ¢.

From this form of the equation, the locus of the directrix of the
parabola can be determined immediately.

For, since the double parameter of the parabola is given in the

. 20,7 . o .
equation by —gv—‘- y and the directrix is at a distance from the vertex

equal to half the parameter, then the distance of the directrix from the
axis of « is
2

U
?/8’*‘27]
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6 Motion of a projectile, [on. 1

(where v, is the ordinate of the vertex), or equal to
v v v .
2 2" 2"
thus this distance is independent of ¢, and we have the law:

All parabolas of the given family have a common directrix; its
height above the level range is equal to the height k, reached by a
body thrown vertically nupward with the initial velocity 2.

The velocity of the projectile at a given point (zy) of the flight
path was found before to be equal to v/[2¢g (b —y)]. This velocity is
that which the body would
possess, if it were allowed
{ : to fall freely from the
hey directrix to any point of the
b path. (This can be seen

A to follow immediately from
v the law of vis vive or Kinetic
Energy; because the kinetic
ol \ energy of the shell of mass

7, \ m at a given point of the

path (zy) is +me?, and the

loss of kinetic energy § muv;? — $mv* is equal to the gain mg . y in energy
of position; and since v = 2gh, therefore v*=2g (b —y).)

From this relation concerning the directrix, another follows con-
cerning the locus of the focus of the parabolas of the family.

The directrix of every parabola is at a height & above the hori-
zontal through O; the vertex of the parabola corresponding to the
departure angle ¢ has the ordinate y,=Ahsin?¢; thence, since the
vertex of a parabola is equidistant from the focus on one side and
the directrix on the other side, the ordinate of the focus F is less
than the vertex ordinate by A — hsin?¢, or A cos*¢.

It follows that the ordinate S, of the focus is equal to

hsin? ¢ — h cos?p = — h cos 2¢;
the abscissa 08, of the vertex was 08, = hsin 2¢ ; therefore
OF*=8,F*+ 082 =h?cos® 2¢ + h*sin? 2¢ = h2.

The geometrical locus of the focus ¥ of all parabolas of the
family is thus a circle round O.

The point where this circle cuts the horizontal through O de-

termines the focus corresponding to the parabola with the greatest
range.

Common directrix
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§ 2] neglecting the resistance of the air 7

On the other hand, the geometrical locus of the vertex of all
parabolas of the family is an ellipse, with the semi-axes & and %k,

which touches the horizontal through O in O; because it was found
for the coordinates ay, 4, of the vertex that

Ly _ Yo _ 2o y,,-1}h=_

7, = s 2¢, 7 = siD ¢, “Th cos 2¢.

By squaring and adding we have
Zg\? Ys— R\? _
() +( Th )=t

0, Com&mon directriz

Moreover the geometrical locus of the points of intersection of
the initial tangent of the different parabolas with the axis of the
corresponding parabola is a circle, the centre of which lies on the
common directrix of the parabolic family, and touches the axis of
at the origin 0. For such a point of intersection z =k sin 2¢ and
y =z tan ¢, whence

B+ (y—hp=0w

We can also consider the question: What is the geometrical
locus of all points arrived at in the same time, when projected with
the same initial velocity v,, with all possible departure angles ¢ ?

We suppose then that several shells are fired from O simul-
_ taneously, under all possible angles of departure, but with the same



8 Y Motion of a projectile, [cH. 1

initial velocity. At a given instant, the shells will be found to lie
on a certain surface ; what is the nature of this surface ?

Since everything is symmetrical about the vertical line through O,
it is merely necessary here to consider the shells in the vertical plane
of the figure.

After £ seconds the coordinates of such a shell would be

(L‘=’L'OCOS¢-t, g/=vosinqb.t—%gt2,

and this gives
@+ (y + 390 = (wt)"

On the plane of the figure, this is the equation of a circle; its
radius (= v,¢) is proportional to the time, and its centre drops down
along the y-axis; at first, for =0, the centre of the circle is at O,
after ¢ seconds it is 4gt* below O; and so the centre of the circle
descends vertically, as if it were a particle falling freely under gravity.

By rotation of the plane of the trajectory about the y-axis, we
have as the required geometrical locus a sphere, with the radius w,t.

If we fire with constant v, and an angle of elevation ¢,, which in
shooting over sloping ground denotes the angle between the initial
tangent and the line of slope, the locus of the point of intersection of 1
the line of sight and the trajectory is the parabola

gz
2u2sin? ¢,

This is a parabolic trajectory with initial velocity v, and an angle
of departure equal to the complement of ¢,. '

For different angles ¢, with equal v, there is a family of such
parabolas,

This complete family is obviously identical with the family of
parabolas with constant #,, considered in this article. The application
of these facts will be given in § 4.

y=axcot P, —
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§ 3]

neglecting the resistance of the air

§ 3. Pamily of trajectories with constant angle of departure.

A. Let us now consider a rifle or a gun clamped at a constant

inclination, and fired with different initial velocities.

The geometrical locus of the vertex of all trajectorics of this

~ second family is a straight line.

For at the vertex S,

therefore

z=hsin2¢, y=hsin*¢;

y_siwé. y_1
z sin2¢’ x 5 tan .

This line bisects the vertical distances between the axis of « and

the initial tangent.
The geometrical locus of the focus is a straight line.

The coordinates of the focus were

xz=hsin2¢, y=—~hcos2d¢,

+
¥ Ay 4
’I
’
’
/
/ (4
.0 J 2
T~
(OB 1 04,)
G~
®_ .
0/_‘}0‘\
OC, .
PN

.

and by elimination of A it follows that

% = —cot 2¢ = tan (é'n’"‘ 2¢))

therefore the locus is a straight line.
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10 Motion of a prajectile [oH. T

Now let us suppose that we always fire with the same departure
angle ¢ but with different initial velocities v, = +/(2gh); we can
enquire, what is the locus of the projectiles after a given number of
seconds ?

The locus of these bodies after ¢ seconds is determined through
the coordinates

z=v,c08¢.t y=uvsIn¢d.t—1gt?
and then by elimination of v,
y=axtan ¢ — gt

This is the equation of a straight line parallel to the constant
direction of departure OA; its point of intersection M with the
y-axis is at a distance 4 g¢* below O.

Therefore the geometrical locus in space of the shells is a conical
surface, parallel to the surface described by OA: the vertex M falls
from O downwards, just like a heavy particle falling freely.

Finally, the following propositions may be proved:

Consider the straight line OM; M, M, ..., cutting the separate para-

bolas of the family

A in My, M,, M,...;

then the tangents

. to the parabolas at

- M, M, M, .. will

- be parallel, and the

times of flight to

- reach these points

- will be proportional

to the velocity at

these points of the trajectories, and also to the corresponding initial
velocity.

Draw another straight line ON,N,N;... through O, meeting the
parabolas in N,, Ny, Ny, ... ; then the lines M, N,, M, N,, ... are parallel
to each other.

':NM:‘Q
\

B. Family of paraboﬁc trajectories with invariable horizontal component of
the initial velocity; #,cos ¢p=const.=x«.

The locus of the vertex is the parabola g/=‘g—f ;
(For the coordinates of the vertex werc

v="sin ¢ cos qS——x—ztan b ¥ ! sin2<j>—521 tan2¢ ;
8 g g ) 8 29 2‘9 ?
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§ 3] neglecting the resistance of the air 11

and by elimination of ¢, it follows that
: Ly )

Vo= .

The locus of the focus is the samc parabola, but parallel and displaced

|
|
|

2
vertically downward by ;—g

(For the coordinates of the focus were

2 2
xy=hsin 2¢=-';7 tan¢, yy=-hcos2¢p= —-;—g(l—tan%),
+ & _gzt
s 29 T

Further, the locus of the points which will be reached in the same time ¢, is
represented by the vertical line x=1v,¢ cos p=xt.

Finally, the locus of the points where the slope of the tangent is the same is

a parabola.
For according to the preceding

1)02 - x2
= v cos? ¢ (tan ¢ —tan 8)=3 (tan ¢ —tan 8),

U o2 2 —tan?0) =" (tan? b — tan?
y= 59 cos? ¢ (tan® ¢ —tan? §) = 39 (tan? ¢ — tan? §),
and this gives, by elimination of ¢,

22
y=xtan 6+'g?,.

C. Family of parabolas with constant vertical component of the initial
velocity, vpsin p=const.=m ; or, with constant time of flight 7, or with con-
stant vertex height y,.

2
The locus of the vertex is the horizontal line y,=7-;—; .

The locus of the focus is the parabola

_m_g
V=55 " amr
¢ 2 2
For Zp= %—sin¢cos¢=%cot¢,

o2 . m?
Yr=- §9§ (cos?p—sin? )= —fq(cot2 ¢-1).

Thence it follows by the elimination of cot ¢.
Finally the geometrical locus of the points reached in the same time ¢ is the
straight line

) y=mt—}gt?; since y=vwy¢sinp ~4g2

: Corresponding results can be deduced for the family of parabolas (with the
"" same origin 0) which pass through the same target, and further for those para-
bolas in the same plane of fire which touch a given straight line, and so forth.
The proof depends on elementary or projective geometry, The work of Fr. Kiilp,
to which we direct attention, provides exatnples of this kind.
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12 Motion of a projectile, [on. 1

§ 4. Fire over sloping ground.

The preceding problems are now to be generalised: The surface
of the ground (assumed horizontal before) may now be taken to make
any angle of slope £ with the horizontal through the point of de-
parture, and the angle of departure ¢ is then to be calculated.

What is the length, measured on the sloping plane, of the range
attained with given initial velocity? What is the corresponding time
of flight? Under what conditions will the greatest range be attained ?

The equation of the sloping plane being y = tan E, we have in
addition

z=ut, Y=vt—}gt?=zxtank;

from these three equations # and y are to be eliminated, if we wish
to determine the time ¢, which elapses before the shot reaches the
sloping plane.

We have vt — 398t =wnttan K,

2 _ 2

tan £ =

and £ o 2(v2—v,tanE');

9
now v, =1, €oS ¢, ¥, =1, 5in ¢, and therefore
‘= 2v, sin (¢ — E)
T g cosk

:E urther,
—_— i E
4 fvlt—?}otCOS(ﬁ_—o __(ﬁﬂl}g—)’

and thence the range 04 over the plane of slope is

04 @ gﬂfcosgbsin(tj)—E).

YA cos® K

What is the value of the departure angle ¢, with given initial

velocity v, and given slope E of thé ground, for which the range 04
is a maximum ?
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§ 4] neglecting the resistance of the air 13

The expression cos ¢ sin (¢ — E) is to be differentiated with respect
to ¢. This gives
} —sin¢sip(¢>—E)+cos¢cos(¢—E’)=O,

’ tan (¢ — E) = cot ¢ =tan (7w — ¢),

and so we have y
¢—F=4m—4,

| $=1(m + ).

The angleinthis
case between the
initial tangent and
the vertical through
0 is equal to 0 CZE

jr—in—4E=%}nr—3}E;
’gmd on the other hand, the angle between the inclined plane and the
" vertical is 37 — E: so that the direction of projection must bisect the
angle between the inclined plane and the vertical, if the range is to
be a maximum, measured on the inclined plane.

If we fire with two angles of departure, of which one is smaller and
the other is larger, by the same amount ¢, than the angle of maximum
range of fire, then both shots will strike the inclined plane in the same
point 4.

;  The greater of the two departure angles is }m+ 3 E + €; the other

o
is {m+3E —¢; it follows from the above that in the first case the
range is

_2p2cos(jr+3E+e)sin(3r—3E +¢€)
T g cos? ¥ ’
and in the second case the range is
_2u2cos (37 + 4 E —¢)sin (47 — 1 E —¢) i
T g cos* K/ ’
and the two expressions have the same value.
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elevation| § [ 2 | % L2 IS RIS ||/ |88 |88 RI|8|8|5
e O L T T N O S L e e R R O I S e et A e T S iy
[ I I I I ] I il I I Il I Il I [ ] 1] I I I 1] L]
RIR IR (R IRIRIRIR] RN R R R IR RN R R
3° 567| 536| 527522:6522:3] 5261 534 | 546| 562| 585| 615 652 700| 762| 843| 950|1098|1308(1624|2115|2404] 0
5° 053| 895 87818683 | 8658681} 878| 895} 919| 952! 995]1050|1120|1210(1325|1473|1669|1928[2259(2519| 0
10° 1937117901743 }1710]1690 1682|1687 |1703|173211774 /1830|1902 | 1992 | 2101 | 2231 | 2376|2516 | 25782259 O
15° 2920|2658 [ 2668|2500 |2451 | 2419 2402 2401 [ 2414 | 24402479 2530| 2588 | 2647|2691 | 2680|2516]1928| 0
20° 387313473 (332913214 ]3123| 3054 | 3003|2967 [ 2944 | 2931 [ 2924|2914 | 2891 |2831{2691{237611669| O
25° 4768 {4209 [ 4002 {3830 13688 |3570| 3470|3384 (3307 |32323149|3044 | 2891 | 2646223111473} 0
30° 5576 14844 [4566]433014127 | 3949 | 3789|3640 (3492|3333 13149[2914 (2588 (21011325 0
35° 6274|5360 | 5005|4698 | 4427 { 4182 | 3952 | 3726 [ 3492 32322924 [2530(1992 1210 O
40° 684015740 {5306 ] 49241 4580 | 4260 3952 | 3640} 3307 | 2931 2479(1902|1120( ©
45° 7258159725458 5000]| 4580 (4182 | 3789|3384 [ 2944 | 2440| 1830[1050| 0O
.50° 751316050 | 5458 4924|4427 [ 394934702967 | 241411774 995| O
b55° 76005972 5306|4698 4127 [ 3570|3003 |2401(1732| 952 O
60° 7561315740 |5005]14330] 3688|3054 240211703 919| O
65° 72585360 |4566]3830]3123|2419|1687| 895| O
70° 6840(484414002{3214]2451{16821 878| O
75° 6274 14209 (3329125001690 (868'1{ 0
80° 55761347312568]1710] 865 O
85° 4768]2656811743[868'3] 0
90° 3873|1790| 878] ©
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§ 4] neglecting the resistance of the air 15

The geometrical locus of the point of impact A on the sloping
ground, for constant angle of elevation ¢, and the same initial velocity
%, but with variable angle of slope F, is the parabola

B N gz - =
R A G P (B S T

This follows forthwith, when we eliminate £ between z =04 cos E
and y=ztan K.

These relations may be illustrated by means of the foregoing Table. The range
in it is given as
_ 2v,t sin ¢ cos (¢ + E)
T g cos? B/
3
on the assumption that 2%= 10,000 metres, or ¥,=221 m/sec, and that

£E=-20, -10, =5, 0, +5, +10,... up to 87 degrees,
with angles of the tangent sight
$1=3, 5, 10, 15, 20, ... up to 90°,
We learn first from the actual numbers of the Table that for the same slope
E, the range is a maximum, when the initial tangent of the path of flight bisects

the angle between the slope of the ground and the vertical; for example, with
the slope angle = —20°, the maximum of 7600 m oceurs when
$1=1%(90420)=>55°.

In the Table the vertical limits of the ranges, which are attained with the
appropriate angle of elevation ¢, on horizontal ground (£=0), are made prominent
by thicker lines of division.

These ranges may be called the sighting ranges. On the tangent scales of guns
and rifles, besides the sighting angle ¢, (in degrees), the corresponding sighting
range in metres is often engraved.

Thus for example in an actual case the reading “sighting 2500” is equivalent
to “sighting angle 15°”: or the reading “sighting 50007 is equivalent to “sighting
angle 45°.” .

Now if there is a target at a distance of 5000 m from the gun, on ground at a
slope E=20° and if the sight is set at 5000 m to hit the mark, that is with a
tangent elevation ¢;==45° then this setting does not take into account the slope
of the ground. .

We might imagine the trajectory to turn about the muzzle of the gun, and
through the angle of slope, for example 20°, as if the trajectory were a rigid curve.

A reference to the figure on p. 4 will show that this is not actually the case.
In this “swinging of the trajectory ” there is in fact an error.

In the present examples, slope of ground E= + 20°, tangent elevation ¢, =45°;
then the range will not be 5000 m, but 3384 m. With slope of ground F= —20°,
and the same tangent elevation ¢, =45° the range is 7258 m instead of 5000m ;
so that the shell goes too far. .

In all elevations ¢, greater than a certain angle between 15° and 20° (viz,
16° 43, as shown later) the “swinging of the trajectory” strikes short with positive

04

»
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16 Motion of a projectile, [cH. 1

ground slope, and strikes beyond with negative slope: and the error of range is
greater for shooting downhill than for shooting uphill, other things being equal.

For tangent elevation less than 16° 43, the relations are somewhat more com-
plicated. For example, take the sighting 5226 m, on a tangent elevation 3°,

Let the ground slope increase from nothing to +87°, For E=0 the sighting
range will be 5226 m ; for £=87° (vertical fire) the range is zero.

Consequently the range diminishes a little at first, and .then increases con-
siderably, finally diminishing again very quickly to zero.

Since the fluctuation is a continuous one, there must be two ground slopes
between the slope £=0° and E=87° in existence, for which the range 5226 m
will be obtained. For these two values (£, =557 and E;=86"51'), the “swinging
of the trajectory” is quite right; at least there is no error in the range attained.

In this way a certain region is obtained of positive ground slope, in which no
short range lies, but, on the other
hand, too long a range (framed in out-
line in the Table).

The limits of this region are those
angles of slope, for which the “swinging
of the trajectory ” gives the same range
on the sloping ground as on the hori-
zontal.

The question then arises: For
what slope £ is the range OB on the
incline the same as the range 04 on
horizontal ground, if the same tangent.

elevation is employed for the two cases?
The condition requires
2v¢% cos (B + ¢y)singy g .
g cos? B =g Sin2¢;
or employing the principle of “swinging the trajectory” (¢, =¢)
2 cos ( £+ ¢) sin p=cos? E sin 2.

Therefore cos? E—cos? £+ cos Etan? ¢ +tan? ¢p=0.
‘When positive angles of slope are considered, this equation is satisfied by
1. ¢=0, E,=0, E,=90°;
2. ¢=3° E, =557, E,=86°51";
3. ¢=6°, E=12°12, E,=83°13';
4 ¢=9°, E=19"1, E,="78"54";
5. ¢=12°, E,=26°47, E,=73°26';
6. ¢=16", E,=42°96, E,=60°42';
7. $=16°43, E,=E,=51°50.

For example, if the sight of 3° is employed, the range is short if £ < 5°57,
or if E>86°51"; and long if E lies between 5°57 and 86°51. This error
diminishes as ¢ increases from zero up to 16°43".

A. N. Obermayer in 1901 gave also a simple geometrical relation between the
corresponding angles of ground slope E; and E,. The parabolic trajectory is
drawn for the given v, with the departure angle 90°—~ ¢ from the horizon, and this
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§ 5] neglecting the resistance of the air 17

corresponds in the example above to 90 — 3=87°; the circle is drawn with centre O
and radius equal to the corresponding range on the horizontal; and the two
points are marked in the first quadrant where the parabola and the circle intersect,
and the radii are drawn.

The inclination to the horizon of these two radii (5757 and 86°51’ in the
given example) are the ground slopes £, and £ for which the swinging of the
trajectory holds good.

J ree K, (51 50)

b

&

At the same time, as already pointed out above, this particular parabola is the
gcometrical locus of the extremity of all sloping ranges of equal initial velocity,
and equal tangent elevation ¢’=¢, so that from the relative position of the circle
; and parabola we can determine for given slope & whether the shell will range
- under or over.
The circle 2% +y*>= X? and the parabola

, gu?
| y=wcotd-grisint

* intersect in two points in the first quadrant (as in the figure) which are either
both real and distinet, or real and coincident, or else imaginary.

3

N\

§5. Examples.

. 1. The following short table shows how with small initial velocity and
relatlvely great weight of shell the formulae give reasonable approximations to
. the real flight of the shell.

The French 22 em mortar, pattern 1887, is chosen as an example ; the smallest
charge 1135 kg, vy=90 m/sec ; the greatest charge 6126 kg, v,=230 m/sec;
weight of shell 118 kg,

¢’ 2
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18 Motion of @ projectile, [cH. 1

The range X, time of flight 7, height of vertex y,, angle of descent o, and
final velocity », are given in the Table, calculated from the formulae for a
vacuum; the corresponding results in practice are given in brackets.

Yo ¢ X T ‘f‘/a w Ve

230 | 66° 22’ | 3961 (3200)°| 43-0 (40°7) | 2263 (2017) | 66° 22 (70° 2) | 230 (206)
,» | 35° O |5067 (4300) | 26 9.(259)| 887 (820) | 35° 0/(39° 237 | 230 (195)

90 |65°15 | 628 (600)| 167 (166)| 340 (336)|65° 15 (66°31)| 90 (88)
., |34° 27| 766 (750) | 10:3(102)| 129 (127)[34° 2/(35° I')| 90 (88).

2. Since the curvature in the actual trajectory at the point of departure
(#=0, y=0) is the same as that of the parabolic trajectory of equal initial
velocity », and equal angle of departure, where the curvature radius

2
Po=%’ sec ¢,

it is often allowable in the immediate neighbourhood of the muzzle to replace the
actual trajectory with advantage by the parabola with the same vy and ¢, or in the
neighbourhood of the point of descent by the parabola with the same v, and .

(@) Suppose an armour plate is to be pierced at a distance of 100 m from
the muzzle of a mortar. At what point of the plate must the axis of the piece be
aimed, in order that the desired point of impact shall be struck? Assume there
is no error in the angle of departure. The point aimed at must be

100\ 2

above the desired point to be struck.

(8) Determination of the error of departure on the same principles, by a
comparison of the actual and caleulated points of impact, on a target at a given
distance from the muzzle.

{¢) If the total range is X, the danger zone for a target of height 4 is

s ( ara)

1= - .

2 1 Xtane

3. Is it possible to throw a stone from the top of the pyramid of Cheops

beyond the base ?

The height of the pyramid is 137°2 m ; the length of a side of the square base
is 227'56m; so that the angle of slope 4 BO=50°20.

To obtain the greatest range, the stone must be thrown from the top 4 in
a direction A 7" bisecting the angle BAD between the inclined plane AB and the
upward vertical 4D, so that

LDAT=1£ DAB=1(90°+50°20)="70° 10 :
and the angle of projection ¢ is thus =19°50
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§ 5] neglecting the resistance of the air 19

The initial velocity v, of & throw by hand is assumed as 24 m/sec (mean of 30
experiments with different persons); the equation of the path is

The question is then, how great is  when & has the value 1(2275)m? Then
we shall have . .
Qo En 113'72x981 .
y=113"7 tan'19° 50 IR ORI 50 —834m
(with vg=22m/sec, ¥ will be = —107-0m, and with »y=20 m/sec, y= — 138:1m),
The answer is then that it is possible.

4. At what angle of projection ¢ with the horizon must a body be thrown,
so that it may strike at right angles a plane inclined at an angle £ (perpendicular
to the plane of the trajectory)?

Result:

tan (¢ — E)=1cot E.

1 5. What is the difference between the times of flight to the same mark of two
shells fired from the same point with initial velocities » and ¢, and angles ¢
and ¢'?

The difference is

2 osin(¢p—¢)
g vcosp+vcosg’’

6. One shell strikes the foot of a tower on a horizontal plane through the
gun after ¢ seconds. A second shell with another charge and double elevation
strikes the top of the tower after # seconds. The distance of the tower is

T8
Ve

7. Ricochet Fire. Suppose a spherical shell is projected from O over a hori-
zontal plane with velocity v, and angle of departure ay. Let the elasticity be e
(e=0 for completely inelastic bodies, e=1 for perfectly elastic bodies).

The shell strikes the ground at 4 at the same angle a;, and with the same
velocity vy; it starts afresh to describe a parabola (but with smaller departure

2—2
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20 Motion of a projectile, [cH. 1

angle ag and smaller initial velocity v,), strikes the ground again at B a second
ime, and so on (see figure).

How great is the total range up to the ath impact, and what is the corre-
sponding time of flight?

By Newton’s Law for the vertical impulse of two elastic masses m and A/,
one of the masses M (the Earth) being assumed as infinitely great compared with
the other, it is easy to deduce the velocity v, with which a ball springs up, if it
falls vertically on the ground with velocity »,. It is found to be er;, where ¢
denotes the elasticity of the ball. If then such a ball is thrown aslant at an acute
angle a; with the horizontal ground surface (as in the above figure), it is only
necessary to resolve the striking velocity into two components at right angles; in
the horizontal direction there is no impulse, and assuming that friction may be
neglected, then the horizontal component of the velocity remains unaltered,
MA=AN, or

7] COS a; =10, COS az.
On the other hand there is direct impact in the vertical direction, so that
AR=¢.AQ, or vysin ay=ev, sin q;.

In this way we know the direction a; and the magnitude »; of the velocity
with which the rebounding ball leaves the surface; for it follows from the two
equations that tan a; : tanay=1 : ¢; thence a, is known, and then »,.

" (These considerations are to be applied again as often as the ball rebounds, as
at 4, B, C.)

Denote by a, the acute angle at which the ball is moving immediately before

the ath rebound, and by #, the corresponding velocity. Further let W, denote the

range up to the nth rebound, measured from O; ¢, the time elapsed. In the hori-
zontal direction we have for the different impacts

Vg COS ag==") COS a; ==y COS @y= ... == ¥, COS dy.
On the contrary, in the vertical direction

vy 8iD @, =ev; sin ay=eyy sin ay (because ayj=ay, and v,=7v,);
2 1 1 0 ay 1 ’ 1 0/)

80 also ¥4 Sin az= evy 8in ay=¢€?v; 8in a; =62, sin ay;
d 1 . v, 8in g,
and generally Vo COS Gy = €08 @y, Vo SIN ap=——my—
Therefore
tan a,=c*~ltan ay, v,2=v,? (¢~ 2sin%ag+coslag) ..ooernnnne. (I)

Then the velocity of the ball before the nth rebound is calculated from the
initial condition ay, %, and the elasticity e.
‘What is the time elapsed up to the nth rebound ?
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§ 5] neylecting the resistance of the air 21

Tho first arc 04 will be described in time

2 .
12 =?° Bl ap;
the second are in time .
2evy Bin ay =t
g
and so on. The time to the nth rebound will then be

v, .
tg—t1='—g? sin ay= :

t”=2'vosm ao(l+e+e2+c3+...+e"")=2v°mn ao.l—gﬂ

7 7 T (1I)
The ranges 04, 4B, BC,... will be

22 .
04 =vt) cos ay=vt, cOS @y, where ;= ?9 sin ay,
. 2evy .
AB=vy(tz—2)) cos ay, where £,—¢ =7 sin ay, ¥gCO8 ag="7¥,COS ap,

Q? .
AB= 7 € oS ap sin ag, and so forth.

The whole range 7, from O up to the nth point of rebound is thus

2 ? -
=2_1:79-3in ag CoS ag (1+e+82+...+e”'l)=%0 sin 2001 —ee """" (IID

This expression (III) is sufficient, either to calculate W,, when ay, 7, and e
are known, or elsc to determine the elasticity e from v, ag, and W,,.

Theoretically the ball will keep on striking the ground, always describing
smaller and smaller parabolag. But although the number of these arcs, described
by the ball, is infinite, still the aggregate range is finite, and so also is the total
time during which the ball is in movement.

In fact, for =1 (since e is a proper fraction and the limit of e"=0), we have

t=% sin ao.l—le, W=vv§ sin 2ap. IL—e'

The difference from motion in a single arc, with the same initial velocity v,
and same departure angle qq, is that in the ricochetting the range and time of
flight are increased in the ratio 1 : 1—e; where e is the elasticity of the ball

[Ricochet Fire was known already in the 16th century; and this kind of fire
was first introduced systematically by Vauban in 1688. This method was in
use till about the middle of the 18th century: Lieutenant Paul Jacobi wrote in
1756 an extensive work on ricochetting and the rules by which the best results
would be obtained. The mathematical theory was developed by Bordoni, 1816,
and Otto, 1841.]

Consult § 75 on ricochetting over water with partial penetration. In water
az < a;. On the contrary it often appears, according to the nature of the ground,
that ¢ > ¢, ; this was the case in the experiments carried out by F. Krupp on sandy
ground according to the procedure of F. Neesen. In such cases other assump-
tions must be made, The assumptions made in example 7 hold only for the case
where the tangential friction on impact may be neglected (compare also for instance
B. Keck, Lectures on Mechanics, Hannover 1901, Volume 11, page 160).
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22 Motion of a projectile, [cH. I

§ 6. Trajectory in a vacuum, taking into account the decrease of
gravity with the height and the convergence of vertical lines
from the curvature of the Earth.

Take the centre M of the Earth (as in the figureyas the pole ina
. system of polar coordinates ; and let any

arbitrary point P have the polar co-
ordinates MP = radius vector », and

N 2 OMP = polar angle «; the direction
‘.. OM of the polar axis from which the
', polar angle a is measured may be left

—’,g
‘
’

e - -

‘:' ) k ' undetermined at first.
! R ’ At A, the point of departure of the
'\‘ ; shell, let =17, =radius of the Earth,
Y /6,870,300 m; let the initial velocity be
K% /1, and the angle of departure ¢.
N e According to Newton’s Law of
"""" i Gravitation, the acceleration of gravity
Pe? da,
=g ;"5, or % Moreover, 1 d_: is a constant, C, along the whole path of
. da. . .
flight; the value of 7‘% at the point 4 is given by C = ryv, cos ¢;
since here »doa = cos ¢pds (where ds is the element of arc), and Z—i= Uy,
we have
de
7‘2% =C0=7Co8¢h. .ccoeeerrrrennrnnnn. €3]

Further, in the motion of the shell along its path,
dv_ pdr dv ®

i~ " eds O Yar T T
and integrating from 4 to P,

o

’02—’002=—2,ujr7”"2d1"=+2,u (%—7}—),
k) 0.
2u
2 — ol
or v?=q 4+ ol
where g=v°2-—gl—l'. .................. (2
7o
. ds\? [dr\: da\?
PR ot NRNNY Boddl o
Since v "(dt) (dt) +r2(dt) ’
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§ 6] neglecting the resistance of the air 23

d dr _drda drC
an dt dadt

equation (2) may be written in the form

g+ 2 2;4. (dr)’ (% ,

/'-2

da

or,

|
ale

o Jeg)
\/(“E&‘%:) . 5 1

V8]

This is the differential equation of the path of the shell, with r
and a as the two variables. Integration gives

-+

A~ 3IQ

da =

C p
o r C
o — cy = COS #2
«/(“ 02)
or r= B—*—, ........................ 3)

1+ ecos(a—+)

where v denotes an integration constant, and where

P“’ e“«/( 902)

This equation (3) shows that the flight path is a conic section.
To determine the integration constant ry, we know that

p

T1¥ecosa
is the polar equation of a conic section, in which the parameter

b a—d?
= e —— p— —_— —_ 2 = )
p=z p a—ed=a—-ea=a(l —¢),
[@¢ and b the two semi-axes, a the one that contains the focus, d the
distance between centre and focus of the conic section, e = the eccen-

tricity].
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24 Motion of a projectile, [cr. 1~

One focus M is here the pole of the system of polar coordinates,
and the polar angle a is measured from that vertex O
of the major axis that lies nearest to the focus 2/;
with e < 1 we have an ellipse ; with e =0, a circle; e=1
a parabola; e >1 an hyperbola.

When the integration constant v is zero, the polar
axis OM of the polar coordinate system is the line

\
—a—
—0

M joining the perihelion O to the centre of the earth.
0 We have then
- p
(il prnpervwe-P LRI “4)
2 2p
2 — 2 I
PP = oy " o (5)
' Ce \/ qC*
where =2, e= (1_;.__)’
Py I
and
q=v7— %—: , p=gre C=mrwmcos¢, 1,=162370,300m.

Since 7y, ¢, %, are known, and also C, g, ¢, €, p, we are in a
position to determine for any value of a the corresponding distance r
of the shell from the centre of the Earth from (4), and from (5) the
corresponding velocity » in the trajectory; the time of flight is ob-
tained then from the integration of

r2do
o -

The trajectory is an ellipse when e < 1, that is when

2 B
1+%<v,,2—g/"—")<1, or v0<\/2—’u.
% 7o 7o

Now \/%’—L =4/[2.(981)6,370,300] = 11,050 m/sec,
0

dt =

so that the path is an ellipse so long as v, remains < 11,050 m/sec.
This elliptic orbit is a circle in the special case when =0, or

29 2 2
1y UOEG ( B)

T
7oty

If = 2, this equation becomes

1 PoVol 1
5 __ - —To% P
2 — 2z o5’ 2 # 1 i«/<1 o ¢>, )
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§ 6] neglecting the resistance of the air 25

and this expression is real only when cos¢=1+1, ¢ =0 or 7; in that

Tolg?
case..o_.q_== »

Vo= ,\/:—E = 7900 m/sce.

Thus under the specified assumptions the trajectory with any
ordinary initial velocity v, is an ellipse; it is a parabola when
v, = 11,050 m/soc; with still greater initial velocity it would be an
hyperbola.

The trajectory can be a circle only in the special case when the
shell is fired horizontally, with an initial velocity of about 7900 m/see.

To calculate the range A W and the vertex ordinate BS of an
elliptic trajectory from A, we should proceed as follows: first calculate
the polar angle a = £ OM A, which corresponds to the point A, from the
relation 7, = TFecosa epcos o’ which holds if 4 is to lie on the trajectory.

Twice the supplement of this angle is the angle AMW; from
this and »,, the range 4 W can be calculated.

Further, the vertex ordinate BS of the trajectory = MS —r,, in
which MS denotes the maximum value of r; this is when the

denominator in r = P assumes its least value, that is when
1+ ecosa

p =P
T (and ryin T+e MO, and thus the

major axis of the ellipse is given by 7maz + 7min). Thus
BS= _l—?-—e — Ty,
Numerical example: v, = 820 m/sec, ¢ =44°, r= 6,370,300 m.
Then ¢ = 099445, a, = 179° 41’ 23"-26;
AW 2(180 —a) 031011
%rr, . 360° 180
Thence the range A W = 68,958 m; vertex height BS = 16,620 m.
On the other hand, in the parabolic path with the same v, and ¢,
the range will be 68,500 m, and s
the vertex height 16,538 m. D E
Of the three influences con- /
sidered here, the curvature of 4 w
the Earth’s surface is the most
important, as it makes an alte- V%
ration of range '

68958 — 68500 = 458 m.

cosa=—1: thus ry. =

-~

X
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26 ' Motion of « projectile, [cH. 1

For if we draw the horizontal straight line ADE through A in
the plane of the diagram perpendicular to r,, and 4ASD the parabolic
trajectory with its corresponding range A D, in which w = ¢ denotes
the acute angle of descent, it is obvious at once from the figure that
AD is less than the range A W.

The difference of the two ranges can be calculated approximately
from considerations similar to those which are usual in the cal-
culations of a horizontal range: for AE*=EW (EW + 21,), and,
approximately, AD*= DEtan ».2r,; DE is nearly equal to the

AD?
r,tanw

difference in question AW — 4D =~ This gives in the

present case 387 m,

If similar calculations are carried out for ranges such as can occur
in practice, it will always be found that the three influences, curvature
of the Earth, convergence of the vertical, decrease of g with the height
need not be considered.

It is interesting to discuss the trajectories if a shell is fired from
the same point O, always in the same direction, but with increasing
initial velocities v,.

a. Horizontal Fire.

Tt is assumed in the figure that shells are fired horizontally from.
an elevation A in the neighbourhood of the surface of the Earth.

A Direction of fire

As the initial velocity v, increases, so the ellipse broadens; the
focus moves from A4 towards M; with v,=7900 m/sec the shell
describes a circular path round the Earth, in perpetual motion, and
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§ 6] neglecting the resistance of the air 27

the movable focus comes into coincidence with the fixed focus M.
In this case the shell flies round always at the same distance from the
ground.

When the initial velocity inereases still more, the shell at first goes
{ further from the Earth’s surface, in an ellipse, but returns again to A
the point of departure. At the opposite side of the Earth the shell
recedes more and more from the Earth’s surface; the movable focus
goes back beyond M, on the prolongation of the line 4 M.

With the velocity v, = 11,050 m/sec the shell does not come back
to A; the ellipse is changed into a parabola; the movable focus has
receded to infinity.

: As soon as this initial velocity 11,050 m/sce is exceeded, the tra-

jectory is an hyperbola, the branch of which through A approximates
more and more to the horizontal direction; the movable focus then
approaches 4 on the line 4 produced backward. .

b. Inclined Fire.

When the shots are made, with a given departure angle, with in-
creasing velocities, the trajectory is again at first an ellipse. The point

F
8
A
P S SR U T
D CenigirEarth
&
&, 3
\l
%‘fé"e'lw thhgﬁo

of descent on the Earth’s surface lies further and further from 4. One
focus of the ellipses lies constantly at Jf, the Earth’s centre; the other
focus moves along a straight line AF.
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28 Motion of a projectile, [cH. 1

This holds, because if the line AN is drawn through A4 perpendi-
cular to the line of fire,the angle NV A F'is made equal to the angle MA N.

A circular trajectory is not possible in this case.

With an initial velocity of 11,050 m/sec the ellipse changes into
a parabola; the shot never returns to Earth again; the movable focus
F has moved off to infinity in the direction 4F.

To find the vertex of this parabola, draw through M, the centre
of the Earth, a parallel to AF, and bisect at B the line AC between
the initial point 4 and the point € where the initial tangent meets
this parallel, and draw the perpendicular BD on CM; the foot D of
this perpendicular is the vertex of the parabola. (In other words, D
is the mid-point of MC.)

§7. Collection of the formulae for motion of a projectile in a
vacuum, with constant acceleration of gravity g:

v, = 1nitial velocity;

¢ = initial angle of departure, or the angle between the initial
tangent of the path and the horizontal;

g = acceleration of gravity, given in Table 2 in Volume 1v;

@, y = coordinates of the shell after ¢ seconds, referred to a rect-
angular coordinate system through the point O;

= velocity of the shell at any given point (zy);

0 = angle of slope with the horizon at the point (2y);

o = acute angle of descent;

X = horizontal range through the muzzle; «;, y, the coordinates
of the vertex, v; the velocity at the vertex, ¢, the time of flight to
reach the vertex;

E = angle of slope of the ground;

¢.= ¢ — E the angle between the initial tangent and the slope
of ground;

2
h= %’ for which refer to Table No. 1 a in Volume 1v.
1. For any point of the trajectory.
Horizontal distance

@ =1t cos ¢ = C;S ¢ (tan ¢ — tan )

= % sin 2¢ £ %" cos ¢ /(v sin® ¢ ~ 297)

(AN U,® 2
=— 2¢ + — cos® ——1};
2 sin 2¢ + 7 cos® ¢ «/(002 o P 1) ;
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§7] neglecting the resistance of the air 29

Vertical height

g,’l)2 o e v
y=axtan¢ — 2_17’008’4): vot‘&9§¢—§-gt2=1}-gt (-9
W v 1 —tan?d) = (1 -2 ;
=5 = ycos”qb(tan ¢—tan?l) ==z (1 X) tan ¢;
Slope of the tangent
tan @ =tan ¢ — _9'_ _tan ¢— 97—y V(v2sintd —2gy);

v, coS ¢
Time of flight 1

e _wd S,

% cos’ @ Y, COS ¢

T i cod¥ep (fan ¢ — tan 0)y=— sm ¢ +- \/(vo 51n’¢ 2gy)
=-g-sm¢o + Ecos ¢>«/ 1-}0200323 - 1) 5
Velocity
_vcos¢

= V(v — 29y) = v, cos ¢ \/l_l + ta ¢—,U-°;Ej;g)z]

= ¥,C08 ¢ /\/[1 + ’oan b— —2@(})] .

2. Vertex.
Horizontal distance

W o g . .
%sm2¢o—hsm2¢,

Vertical height

v . : 9%s
ys=z%s1n2¢§IL51n2¢—2v c;s”¢ $x, tan

= bgt = 4y T* = 123T%;
Time of flight
ty= %’sin ¢ =
Velocity v, = v, cos ¢;
Average height of flight: v, = $y, = 081677
2
Greatest height (with ¢ = 90°) = % =h.

3. Point of fall.
Range

P, =—-sm2¢ ‘7hsm2¢>—voT\/
—%gT’cohﬁ 2;

Ly _1
vcosd g

V(w, tan ) = 3 T;

2T2
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30 Motion of a projectile, neglecting the resistance of the air [CH. 1
2
Maximum X (for ¢ = 45°) =”—; = 2h;
Time of flight
2., X 2X _ \/83/8
T—'—g_sm(#_'vocos:ﬁ—_\/(g tanqb)— 7

= }, V(@ + 9X) + V(w2 — 9X)];

Velocity, v, = v,; acute angle of descent, © = ¢.

4. Angle of departure to hit a given mark (a, b) with given v,:
_2pw e @
w2/ |56 -0)-5])
2 2
=a{hi \/[h(h—b)—-%]};

(+ for high angle, — direct fire).
5. Initial velocity to reach the mark (@, b) with given departure

angle ¢: :
—\/ gacos b wher tanE—li
Y= 2sin(¢p— E)cos¢ |’ © A

6. Range W on sloping ground at angle of slope %'
_ 2v¢ sin(¢—K)cos$ _ 20 sin ¢ cos (¢ + &)

w g cost B/ g cos* K/ ’
Time of flight
7 =g?2 sin(¢—-E)=% sin ¢,
“ g cosk g cos B’
7. Parabola enveloping all trajectories with given v,:
%) 2

o

e
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CHAPTER II.

On air-resistance

I. AIR-RESISTANCE TO AN ELONGATED SHELL ON THE ASSUMPTION
THAT ITS AXIS LIES IN THE DIRECTION OF MOTION OF THE
CENTRE OF GRAVITY.

§ 8. General considerations.

Consider a sphere A BCD at rest, in a current of air or fluid moving
with given velocity, and assume that the air is frictionless.

The stream lines along which the separate air particles are moving
will diverge at the front, and on the rear will
converge again. ¥

(This last can be shown through the familiar
experiment of holding before the mouth a cylin-

drical flask about 15 cm in diameter, and behind ¢
it a burning candle; the candle can be blown
out.)

We arrive therefore at the following con- D
clusions:

On the front side ACB of the sphere a
thrust will be exerted in the direction MN of
the current; and an equal thrust on the rear
side of the sphere, in the opposite direction.

The resultant total thrust on the sphere is zero; the sphere
experiences no push.

The same will hold when the air is at rest, and the sphere is
moving in the direction NJM.

On the front side ACB of the sphere work is done, and the air
particles alter their velocity and direction.

On the rear side A DB, the direction and velocity will be the same
again; the work done is restored.

In a similar way, the pier or pile of a bridge standing in water,
or a rudder moving through the water will feel no resistance.

This result of theoretical Hydromechanics for a frictionless fluid
stands however in well-known contradiction to experience.
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32 On air-resistance - fom 11

In reality the nature of the air motion round the shell is not so
simple.

In the first place there is friction of the air particles among them-
selves and against the rigid body.

Friction acts so as to break up the air on the rear s1de of the body,
and eddies are formed. .

These are shown clearly behind a stick moved through water, or
in air full of smoke through which a body is moving.

Secondly, wave-motion comes in. Mach showed by photography
the waves and eddies following a flying bullet and made an important
advance in the theory of air resistance to a bullet.

Take a long cylindrical tube, and suppose a plug to move in it
with a velocity of 167 m/sec, and follow up this motion at small
intervals of time.

A condensation of the air is set up in front of the plug; and this
condensation is propagated with the velocity of sound, viz., 334 m/sec.
In rear of the plug a wave of rarefaction is propagated backward with
the same velocity.

If the piston is supposed to move with uniform velocity, a con-
densation and rarefaction is made anew in every small element of time.

The same happens when a shell moves in free air; only the air
waves going forward and backward spread out in spherical form.

In the figure the shell is represented as a rod AB moving in |

the direction BA with velocity
’ 167 m/sec.
g At the front end A4 a spherical
b o 4 wave (?f condensation 1s started;
G |0, its radius is zero.
A moment ago the point of the
c shell was at C, and the condensa-
tion air wave that started at this

1 moment from the point has spread
out with double the shell velocity, that is at 334 m/sec.

The radius CC, = CC, = CC; of the wave-surface C,C;C; is thus
double as great as the advance CA.

Earlier still, the point of the shell was at D (DC=CA); and the
condensation wave sent out is now the sphere D, D,D;, of radius
DD,=2DA; and so on.

We see then that the condensation air waves must travel faster
than the shell.
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§ 8] On «ir-resistance 33

So also with the rarefaction waves that proceed from the rear end
of the shell, and are propagated backward in a spherical form with
double the shell velocity.

But if the shell velocity v is increased and at last becomes greater *
than the normal sound velocity s (for instance if v = 668 m/sce), the
condensation air waves set up by the point of the shell cannot go faster
than the shell but accompany it as conical waves.

Suppose again that the shell is regarded as an infinitely thin rod
AB, and that the point of the shell is now at 4.

A moment ago, the point was at C, and from C a condensation
spherical wave is propagated with
the sound velocity of 334 m/sec, and
the wave-surface is now a sphere
with radius CC, = CC, = half the
advance C4 of the shell. Previously
the point of the shell was at D; and
the spherical wave produced at this
time is a sphere which has spread out-
to a radius DD, = DD,; and so on.

The wave-surfaces of the group of elementary waves, proceeding
from the’point of the shell at the different positions, will thus be en-
veloped by the cone KK (called the head wave), of which the angle
of opening is 2a.

Similarly for the conical stern wave SS.

Mach supposes that sin a = %

For in the same time as the head wave spreads out from D to D,
with the sound velocity s, the head of the shell advances from D to 4.
Actually the head wave, in consequence of the finite cross-section,
is flattened in front. At this point MN, a=90° and so v=s; the
condensation of the air is propagated here with
the velocity v, owing to the motion of the shell.
(The faet is that the velocity of sound is only in
ordinary circumstances equal to about 334 m/sec; M
this is modified by the temperature of the air, (=] )y
and the velocity of sound s can assume a higher
value according to the strength and nature of
the air waves; this has been proved by Mach by
a series of expeuments compare § 87.)
This region MAN in which the surfage of the head wave runs

c 3
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34 y On air-resistance [cH. TX

forward very nearly flat and perpendicular to the axis of the shell,
depends on the breadth and flatness of the head of the shell.
If then the velocity of the shell is to be determined by means of

the equation sin a = S, from the angle a of the head wave, this must

be measured from the straight part of the boundary of the wave.

Out of 20 photographs df a flying bullet, which' were produced in the
ballistic laboratory, the velocity of the bullet was given by the mean value
of 8930 m/sec, with a probable deviation from the mean of 1-1°/,, while with the

" Boulengé Chronograph a mean velocity was measured of 8883 m/sec.

The same result was found with 20 rounds of the bullet M. 88, with a mean
velocity of 655 m/sec; against a simultaneous Boulengé record 640 m/sec.

So also 20 shots of the bullet of the Mauser pistel ; mean 454 m/sec; measured -
by the Boulengé, 467 m/sec.

Evidently the head wave and also the tail wave must make closed
surfaces.

The vertex MN of the head wave lies nearer the head of the
bullet, as the velocity increases.

In the new infantry bullet, with sharp point and very great velocity,
the heud wave seems to begin somewhat behind the point, so that the
point of the bullet pierces air at rest; only immediately i front of
the point there exists a strong condensation of the air.

At the rear end of the bullet, eddies of air are formed. These eddies
can be seen by photography extending many metres behind the bullet.

All these effects are revealed in water also, with ships, the piles
of a bridge, and so forth; only here the head wave is made up of a
large number of parts of waves, which does not appear to be the case

“with the air wave of the bullet, as given by microscopic examination.

The reason for this may well lie in the fact that in water no
shock can arise with a single wave of elevation, while in the air there
is a single wave of condensation.

For water the analogy to sound velocity is the velocity depending
on the depth of water, with which the corresponding water waves
propagate themselves.

We can observe that as a ship is moved through the water with
increasing velocity, the crest of the head wave moves from the bow
of the ship and retreats further towards the midship.

The analogy between a ship on water and a bullet goes further
still:

Denote the resistance, of a ship for any velocity v by W (v), and
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§ 8] On air-resistance 35

plot graphically the value of WT}S”)

as a function of v determined by

observation; a curve is obtained which, according to Schiitte, Lang
and Lorenz, assumeés a shape similar to that of the analogous function
for air resistance (see § 10).

The curve has an inflexion in the neighbourhood of the velocity
of propagation of the water waves.

The same holds for the resistance W to a bullet for the different
velocities v in the air: an inflexion lies in the corresponding curve in
the neighbourhood of the normal sound-velocity s.

H. Lorenz supposes that a resonance phenomenon occurs here, such as is
well known in other cases. _

Consider the transference of energy between two swinging pendulums; or a

otating motor, suspended as a pendulum; the sympathetic vibration of tuning
forks and strings or the resonance of electric waves; the swinging of the body of
a ship with the masses of machinery moving periodically in time with the ship-
vibration; and so forth.

The energy of the bullet would be transferred to the air chiefly at a velocity
which coincides very nearly with the natural velocity of propagation of the air-
waves.

N. Mayevski appears to have determined the fact empirically for bullets, that

the coefficient K=-;—Z experiences a rapid increase in the neighbourhood of the

sound-velocity s.

A. Indra sought to elucidate these facts by supposing that the energy of the
bullet was consumed in the progressive generation of new head-waves.

Nevertheless it is not clear why the coefficient A diminishes again somewhat
when the bullet velocity increases still further, although bullet-energy is expended
through wave-making at all velocities. These explanations of the inflexion are
not complete.

In the first place the inflexion, when it does exist, is not at »=334, but more
nearly v=480m/sec; and it will be found that especially with bullets of pure
cylindrical shape there is no inflezion at all. The true reasons for the existence
of the inflexion will be given'later, .

The analogy between ship- and bullet-motion shows that the forn
of the rear end of the bullet should receive more attention than
hitherto has been the case.

Moreover it is evident that the movement of the bullet in air is
quite as complicated as that of a ship on water, and consequently
these simple laws of measurement will not apply entirely: Assuming
that the long axis of the bullet lies in the direction of motion of the
centre of gravity, and that the bullet flies like an arrow, the air-

3—2
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36 On air-resistance [cH. 11

resistance W to the bullet may be taken as being proportional to the
following magnitudes:

(@) to the cross-section of the bullet, perpendicular to the axis,
Reqr (m?),

(b) to the air-density 3, that is, the weight of a cybic metre of air,
calculated from the temperature, pressure, and humidity of the air.

Generally the density & is taken relatively to an arbitrarily assumed
normal air-density §,, for example, 8, =1-206, or &,= 1220, kg/m?,

(¢) to a coefficient ¢ depending on the shape of the bullet
(10007 = n is commonly called the form-value),

(d) to a certain functlon of the velocity f(v), so that the air-
resistance

W(kg)=EB'r.<.1. f(v).

Assumptions (a), (b),{(c) are merely conventional, and seem reason-
able. '

A prior: it is not likely that the air-resistance, as depending on
calibre *2R, air-density 8, ¢+ and v, should involve these four variables
as factors of a product. Assumption (a) asserts that the air-resistance
on unit area of the cross-section of the shell is the same for the same
shape and velocity of the shell, whether a large or small calibre of the
shell is considered.

In his experiments of 1848, Didion had already dlscovered the
fact that the air-resistance to a bullet of small cross-section is relatively
greater than that to a bullet of large cross-section; and he has sought
to take this fact into account numerically by multlplymg R by the
factor

(0-74 +

0-047
005+ ZR) ’

(On the other hand, later in 1860, he abandoned this assumption.)

Some suppose, from their experiments on air-resistance with bullets
of very different calibres, that proportionality does exist between air-
resistance W and cross-section R?m, and apply the results obtained from
artillery shell to infantry bullets.

In reality this simple relation does not exist closely enough.

The new theory brought out by H. Lorenz on ship-resistance,
which is a generalisation that was verified in its extension to the
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air-resistance of shells, leads equally to the same result, that a small
cross-section expericnces a relatively greater resistance than larger
cross-section.

According to the experlments on the Tower Bridge (J. W. Barry)
a large area of 100 m? experiences only one-sixth part of the specific
resistance of an area of 0'1 m?

The experiments of the firm of Fr. Krupp in 1912 with shells of different form
gave among other things the following results:

The resistance on the cross-section, estimated on the square metre, and with
an air-density of 122 kg/m?, is

(«) for cylindrical shell:

for v =400 500 | 600 | 700 l 800 m/sec
of 6:5 cm calibre 14 255 | 38 51, 66 kg/m?
5 10 ,, 12 2-2 33 47 63
(b) - for ogival shell, struck to 3 calibre radius:
|
. =550 650 750 850 m/sec
for 6 cm calibre l 1 13 155 | 19, kg/m?
9 10 ” 098 1'25 1'52 1 8 »
., 28, 062 08, | 10, | 12 C
” 30 » — - 09 1- ”

The air-resistance distributed over R?r is thus in fact, as Didion found, less in
the greater calibre than in the smaller calibre, and moreover independent of the
velocity. This influence of the calibre comes consequently into consideration.

The ordinary assumption then does not hold, that the air-resist-

ances to two equally large elements of surface of the head of the shell,
" equally inclined to the axis of the shell, at equal velocities are equal,
whatever the distance of the surface element from the axis of the shell.

This appeared likely from the experiments of Mach. In his photo-
graphic work he determined experlmentally the deviation of hght by
the penetration of different strata of air in the immediate neighbour-
hood of the bullet.

With rifle bullets of 11 mm calibre and 520 m/sec velocity (for
which in Krupp’s experiments the air-resistance would be one extra
atmosphere) Mach found the following: in the vertex of the head
wave the density of the air corresponds to about 3 atmospheres;
4’5 mm behind the vertex, 12 mm from the axis of the bullet, and
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3 mm distant from the edge of the head wave, about 1'7 atmo-
spheres of density; 75 cm behind the vertex, 9 cm from the axis
of the bullet and 75 cm distant from the edge of the wave, about
16 atmospheres.

The fact that the air-resistance to the shell increases and decreases
exactly in proportion to the air-density cannot be proved experiment-
ally in a way free from objection.

Assumptions (¢) and (d) contain in themselves the assertion that,
with equal calibre and equal air-density, but different shape of the
shell, the character of the air-resistance remains unaltered, and so in
shells of different shape it is only the ordinate of the curve f(v) that
alters.

This hypothesis that the influence of the shape of the shell can
be expressed by 4 single’ factor 7, has not been verified theoretically
or experimentally. .

In any case 7 is not constant, but is a function of other quantities,
on which it really depends, although it alters only slowly with these
quantities, . :

In general most of the difficulties over the research with respect
to air-resistance relate to the dependence of this resistance W on the
velocity v of the centre of gravity of the shell for equal calibre, equal
air density and the same shape of the shell.

§ 9. Theoretical considerations of the law of air-resistance.

Newton’s considerations seem to rest on the following ideas.

If the velocity of the shell v is increased, then not only is the
acceleration of the air particles increased but also the mass of air set
in motion: the resistance of the air is thus much greater.

Consider a cylindrical shell at rest, of the cross-section 4B =F m?
against which the air flows in the direction of the axis with velocity
v m/sec.

Let the velocity » be represented by the vector AC=BD. The
air particles, which at first were to be found in the line CD, soon
arrive at 4B, and lose their velocity by impact against the shell.
The weight of a cubic metre of air being 8 kg, this mass gg% of air is
discharged against the shell in one second.

The alteration of velocity in one second is v and the retardation is
v also.
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The thrust experienced by the cross-section AB from the im-
pinging air is the product of the mass and the retardation of the
colliding volume of air, and so is

Fyd v—0 _ Fév?
981" 1 981"

Conscquently the resistance in still air to a moving eylinder is
proportional to the cross-section F (in m?), the air-density & (in kg/m?)
and the square of the velocity v (in m/sec):

Fép
kg)=z0=.
Wikg) = 557

(The formula used in practice for the wind, pressure W on a
perpendicular plane surface ¥ by a wind velocity v m/sec is in
fair agreement, in that

W=0122 F*.)

It must be added that the effects produced by the air lowing away from the
stern of the body, friction, wave-making, and all that occurs on the rear of the
body are left out of account.

The Newtonian theory may be studied in the light of the following experi-
ments.

Place a plane circular plate AB (figure a), about 30 cm in diameter, on one

Fig. 8. >»——-> B

D
C

]
1S
|

[ o<

scale of a balance. Superpose a fixed parallel plate CD, about 20 cm in diameter,
baving in the centre a circular hole which carries a tube R, through which air
can be blown in the direction of the arrow.

If CD is 20 to 10 ¢m above d B, the movable plate 4 B will be driven away
by the blast of air,
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On the other hand if the distance between the plates 4B and €D is about
1 cm, the lateral outflow of the air between the plates creates a defect of pres-
sure, and the plate 4B will be lifted.

When in the apparatus of figure b we blow downwards in the dmectlon of the
arrow, a ball on a small stick across the tube 2 will be drawn out, and fly in the
direction of the curved arrow.

Figure ¢ shows a tube ABCDAB,C1D,, provided with an enlargement at
BB,, and a contraction at CC;. A stream of air is blown through it in the
direction of the longer arrows.

Inside the tube the air stream experiences at BBI an increase of cross-section,
and so a diminution of velocity; the consequence is an excess of pressure (re-
presented by the smaller arrows). At CC, there is a decrease of cross-section
and an increase of velocity; a drop of pressure ensues (a sucking action in the
manometer tubes).

The reverse is the case outside the tube.

The pure Newtonian impulse pressure theory cannot then suffice when, for
example, we require to know the thrust experienced by the roof of a building
in a horizontal gale of wind.

On the lower part of the roof it is true there will be in general an increase of
thrust due to the impulse pressure; but higher up a negative pressure can occur -
from the flowing of the air over the ridge of the roof, and so a tilting moment
is possible. In fact a lifting of the roof has sometimes been observed in a
storm.

In a similar way it is possible with shell in flight for this sucking action to be
present, arising from the external shape of the fuse, the driving band, the base
of the shell, etc. *

Many investigators, more particularly O. Mata, in 1895, assumed -
that the transference of the shell-energy to the surrounding air was .-
solely a thermodynamical effect, or an alteration of an isothermal
condition. :

But that this is only one side of the explanation appears from
what has been said already about wave and eddy making.

The first to consider the creation of air waves by the moving body -
was A. Schmidt, of Stuttgart. He assumed the resistance to become }
discontinuous when the velocity » of the moving body was made equal’
to the normal sound-velocity s of the medium.

~ P. Vieille and E. Okinghaus are others who have discussed the
laws of air-resistance, based on B. Riemann’s theory of the propaga-
tion of air-waves of finite amplitude, by considering special shells
with a flat head-surface perpendicular to the axis, and assuming that
the head wave accompanying the shell may be taken as flat.

The propagation-velocity of the change of density of the air must -
thus be assumed to be the same as the shell velocity. -
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Vieille's relation between air pressure p and the velocity of the shell is
2= 9P lop o kg 1) P 2P0
V=l {2L+(L+ 1) 7 } ,

where 8 is the weight in kg of 1 m? of the surrounding air, p, the normal at-
mospheric pressure in kg/m? p the air pressure produced by the motion in
kg/m? k=141 the ratio of the two specific heats, g=9-81,

For example, for p;=10333, 8 =1206,and p=1564 atmospheres=1564x 10333,
we find v=1200n/sec.

In the following table the resistance W is given as calculated by him, and
finally the temperature caleulated by him for velocities above 1200.

Velocity v Resistance W in atmospheres Temperature
in mfsec caleulated observed Centigrade
400 1-58 1-25 —

800 685 623 —
1200 15664 1501 680
2000 438 —_— 1741
4000 1756 — 7751

10000 1098 — 48490

The corresponding formula of E. Okinghaus is
1

W= W,k [1 - (%,9)"] (:3'26)2 + W,

Here W is the air-resistance for the velocity v, W, the special
value of the air-resistance for » =340 m/sec, & the ratio of the specific
heats of air = 1-41.

Since Riemann’s theory holds only for plane waves, these develop-
ments apply mainly to shells with flat heads. )

Nevertheless it seems as if a revision of the Riemann theory of air
reaction might lead to results.

The theory of peripheral motion, enunciated lately by W. Lan-
chester for the motion of gliding flyers in the air, especially for
surfaces like a bird’s-wing, cannot well be of use in ballistics. In this
theory a uniform streaming motion of the air is supposed, together
with a circular motion of proper direction and strength.

So too the comprehensive calculations carried out by Colonel P
Haupt and based on the kinetic gas- theory, are not of great import-
ance for ballistics.

The complicated air-resistance is not satisfactorily represented by
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_ his calculations, and they have led to results differing from the latest
experimental records.

On the other hand a reference may be made to two important
theoretical researches on air-resistance by H. Lorenz and A. Sommer-
feld. H.Lorenz has sought to express mathematically the complicated
motion about a shell in flight, and thereby he has beéen led to the
following relation for the air-resistance. IHe denotes by v the shell-
velocity, by R the greatest cross-section of the shell, s the velocity
of sound, ! the length of the shell; then

ks Rt + Iedvr
V(s — 2 + ki)’

where k,, &, ks, k,, ks are constants, of which k&, and %, depend only
on the shape of the shell, the others on the shape and the nature of
the surface.

This expression for W, determined theoretically, against which
many considerations may be urged, shows that W is not proportional
to the cross-section R, but that the specific resistance, W : Rrr, is
the greater, the smaller the cross-section becomes. _

Further accordmg to this law W is not proportional to a smgle
form-coefficient 7, but five coefficients appear in the form of the expres-
sion, in such a way that the whole air-resistance function f (v) depends
on the shape and nature of the surface of the shell.

Fmally the factor W : v*=1F, in a graphical representation has an
inflexion in the neighbourhood of the sound-velocity, and otherwise
agrees with Siacci’s results.

Consequently the law of Lorenz appears to be a suitable basis for
considering questions relating to air-resistance.

H. Lorenz has shown lately how the coefficients arising in
his formula can be calculated, based on the results of experi-
ment.

It will be worth while then to determine if the Lorenz theory covers .
sufficiently the results of the latest experiments on air-resistance, and
if it is capable of practical application.

A. Sommerfeld assumes the air-resistance W to be composed of the
frictional resistance W, (in its extended sense), which he considers to
be proportional to % and of the wave-resistance W,. :

For this last he obtains an expression by employing the analogy
of the electromagnetic field, as it exists when an electron moves in
it with velocity exceeding the velocity of light.

W =k, RPmrv® + kylv +
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Denoting by s the velocity of sound, then for v<s, we have
W = W, = a;v*; but for v > s, we have

H;=W,+W,=av’+A(1—%:).

The curve W : v* agrees with the latest empirical results.

The inflexion in the curve is explained because in the neighbour-
hood of v =35, the wave-resistance 1V, increases; but this resistance
increases with » at a smaller rate than the frictional resistance W,;
and the ratio W, + W, : W, diminishes again with increasing .

The shape of the shell is not considered by Sommerfeld.

On the whole then it can be asserted that no completely satisfac-
tory and universal law of air-resistance has been enunciated.

On this account we are compelled in ballisties to confine ourselves
mainly to experimental results.

The expression for the air-resistance for any given calibre, any
air-density and any form of shell must be a function of the velocity
(and perhaps also of the acceleration), which represents the following
elements.

1. Suction and eddy resistance.

With increasing velocity a region of attenuated air is formed behind
the shell (similar to what is observed in water with a moving plate).

The corresponding energy is dissipated partly as heat and partly
as energy of motion.

The resistance depends essentially on the shape of the shell. In the
neighbourhood of the velocity of sound it is seen to increase rapidly ;
but further on, it approximates more and more to a fixed limiting
value, given by an absolute vacuum behind the shell.

2. Wave resistance. This arises at all projecting parts of the
shell, especially at the head; yet this only starts when the velocity ex-
ceeds the sound-velocity. -

It increases with the velocity, and finally becomes proportional to
the square of the velocity. '

The energy absorbed in this part of the resistance disappears as
wave energy in the form of sound.

3. Frictional resistance. This appears to be relatively smallin the
case of shell in use.’

4. Finally a complete law of air-resistance must give information
as to the manner in which air-resistance alters when the axis of the
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44 On air-resistance [cH. 11

shell, assumed hitherto to lie in the direction of motion of the centre
of gravity, makes a given angle with this direction.

From the preceding it follows among other things that the shape
of the head of the shell is of importance, especially at high velocities
(over 300 m/sec), further that the shape of the rear end of the shell is
important at low velocities (under 300 m/sec), but that this influence
approaches a limit with increasing velocity.

§ 10. Laws of air-resistance obtained experimentally, and
the corresponding experiments.

(@) With very small velocity v of the moving body, as for instance in
slow pendulum oscillations, the air-resistance according to M. Thiesen
is proportional to the first power of ». This is of no importance for our
purposes.

(b) For velocities up to about 30 m/sec the quadratic law of air-
resistance is universally employed: the air-resistance 1V against a
cylindrical body at velocity »m/sec, with a plane end surface of

Rz m?, in air of density & kg/m® is W = kR —= 95 22

For the value of the numerical function L Poncelet and Dllen

took & = 0081;

F. le Dantec 0-080; P. C. Langley 0-085;
Ch. Renard 0085 Canovetti 0-090;
J. Weissbach 0093 ; J. Smeaton  0°122;
F.v.Lossl 0106, O. Lilienthal 0-125;
E. J. Marey 0125;

G. Kirchhoff (from theoretical calculation) 0-055.

For throwing a stone, the value would be about
7
W(kg)= 008R T8 o 193 22

(¢) The velocities of shell range from v=50m to v=1500 m/sec.

Some 27 empirical laws have been proposed, of which the most part
take the form of W =aw", or W =av™ + bv" +

Since Mayevskl the whole range of Velocn'.y 18 consequently divided

into “zones” such that from one zone to the other either ¢ or » or both

would be altered in the law
W = aqv™.
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§ 10] On air-resistance 45

The calibre of the shell will be denoted by 21 metres; the weight
of the shell by P (kg); the air-density by 8 (kg/m?); the velocity of
the shell by v (ni/sec); the air-resistance by W (kg); the retardation

due to air-resistance, that is the ratio 1111_‘9 , by ¢f (v). Here f(v) denotes

the factor depending on the velocity v in the expression for the retard-
ation of the shell.

1. Didion’s law, based on the experiments of the Metz Committee
of 183940, using the ballistic pendulum, as well as the experiments
of the Metz Committee of 1856-58, using the Navez apparatus; for
spheres, with ¢ =1,

L) v N
W= 0027, Romdi oo (1.+ 4—33),
and

0027 . Romdgi ,
= —oosp + S()="Y (1+ 435)

2. St Robert, in Italy; according to the Metz experiments of
1839-40; for spheres, holding good with ¢ =1,

D] 1) 2
IV = 00387 Bemrbi o [1+ (696)]

3. N. Mayevski, in Russia, according to Russian and English
experiments 1868-9;

(a) for spheres withi=1:

W=0012. B*7&i -~ 1*206 Ll + (186)] for 0 < v < 376 m/see,

W=0061. R?mdt ~—n i 206 , for 376 < v < 530 m/see,

(b) with ¢ =1, for elongated shell with “ogival” point, struck to
a radius of 1 to 15 calibres (ogival point means a longitudinal section
like the pointed window of a church):

W= 0012, Romd 5 [1+ (488)], 0 < v < 280 m/sec,

W=0 026 Rimd ——; T 206 s 280 < v < 360 m/sec,

W=0044. R*mw8 —~— T 206 , 360 < v < 510 m/see.
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46 On air-resistance [cH. 11

4. Hélie gave the following values for spheres, based on the
French experiments:

W=rxRps 2
« (2R) 7

where
for »=50m/sec, x=0'130 . for v=300 m/sec, % =0269
100 132 320 293
120 135 340 316
140 139 360 337
160 146 380 353
180 154 400 367
200 166 420 376
220 181 440 382
240 200 460 386
260 221 500 389
280 244 2> 500 . 390

5. F. Bashforth (England) accordin.gr to some experiments of
1866-70: for elongated shells with “ogival point rounded to a radius
of about 1'5 calibres, for 1 =1,

W =mR*md —==

1 206 ?
where .
m= 0000068 0000075 0-000082 0-000090
for » =600 to 550 550 to 500 500 to 460 460 to 419 m/sec

m= 0000094 0 000084 0000060
for v=419 to 375 375 to 330 330 to 50 m/sec

To make the results hold good for the former Krupp normal shell,
struck to a radius of 2 calibres, 2 must be taken = 0896, according to
Siacct.

6. Hojel (Holland), according to Dutch expenments of' 1884, as

well as Krupp’s experiments : with ¢ =1, for elongated shell with ogival
head of a radius of 2 calibres,

W = 2R) 10008: o
. 981 x 1206 .
where ] '

for =140 to 300 m/sec, nz=05884535, =25

300 ,, 350 ' 008423 5

350 ,, 400 3 0051381 383

400 ,, 500 007483 177

" 500 ,, 700 0'0(53)467 191

»
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7. Mayevski in 1881, and N. Sabudski (Russia); from v=550m/sec
based on the experiments of Krupp 1875-81, the English experiments
of Bashforth 1866-70, and the Russian experiments of Mayevski
1868-69. With v=1, for ogival shell rounded to radius of 2 calibres,

W =mRwdi s

1206 206 ’
where
for v= (0) to 240 m/sec, m=00140, n=2
(
240 ,, 295 005834 3
(9)
295 ,, 375 0-06709 5
(4)
375 ,, 419 009404 3
419 ,, 550 .0:0394 2
550 ,, 800 0-2616 17
800 ,, 1000 07130 155

8. Laws of Chapel (1874), Vallier (1894), Scheve (1907); based
especially on Krupp’s experiments and Dutch experiments with ogival
shell of 2 calibre radius: for v > 330 m/sec,

R2,1000087 0125

W= 981 . 1206(

— 263);
for v between 330 and 300 m/sec,

1)
R?.1000087 0021692

W=—351 *T1-206

(5)
R*.100008: 0033814 .,
981 T 1206

v < 300 m/sec, W=

According to Vallier, the coefficient ¢ should be unity for 2 calibre
radius of the ogival head, or for the semi-ogival angle oy = 41°5. Other-
wise 1 will be slightly variable if v > 830 m/sec; so that

_y[v—(180°+2y)]
4T5(w—263) -

For v < 330 m/sec,
1=067, 072, 078, 110
for values of y=31°, 336, 36°9, 48°2

R1.100008; f(v)

In the notation W= 581 1206
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v )
and ]%2) =K (v), ‘f—‘;—) =K’ (v),
the values are as follows:
v 107K (@) | 102K’ (v) v WEK@ | 102K (v)
=
150 415 1844 390 1043 687
160 430 1680 400 1070 669
170 - 441 1526 420 - 1108 628
180 452 1395 440 1143 590
190 466 1293 460 1165 550
200 478 1195 480 1178 511
210 491 1113 500 1185 474
220 502 1037 525 1187 431
230 516 974 5560 1186 393
240 526 913 575 1180 357
250 535 856 600 1170 325
260 546 808 650 1145 272
270 558 765 700 1115 228
280 564 719 750 1082 192
290 578 687 800 1049 164,
300 586 651 850 1016 140
310 645 667 900 983 121
320 708 671 950 952 106
330 769 706 1000 921 92
340 . 831 720 1050 892 81
350 888 724 1100 865 72
360 - 936 722 1150 838 64
370 977 714 1200 813 57
380 - 1013 702 1250 790 51

Therefore the function K (v) =ji1(ﬂ£) has its maximumat » =525 m/sec.

9. Law of Siacci 1896. This combines all the experimental
researches carried out so far, and holds for velocities up to

v=1200 m/sec.

(2R)*100038
=Ppx1206 7 O

or W =338R*8tf (v),
where f(v)=02002.v— 4805+ 4/[(0°1648.v— 47°95)* 4 9-6]
+ 0°0442v (v — 300)

371 + (L)w

Retardation

200

The curve of the function 10“% is given graphically in figure b
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on page 53. The curve has an inflexion at =340 m/sec, and a point
of maximum value at 500 m/scc.

With =1 the law will hold for ogival shell with head of ogive
from 0'0 to 1'1 calibre long.

If the law is to be applied to normal shell with 2 calibre for
radius of rounding or 1:3 calibre for length of head, then according
to Siaccl ¢ = 0896 is to be taken; but 0'865 1s better.

10. The Krupp tables hold for a 2 calibre radius of rounding,
and an air-density of 1-206 kg/m®.

The numbers, according to W. Gross, can only be considered
approximately correct up to v =300 m/sec, because at low velocity
the errors of measurement have important effects.

The most reliable are the numbers which lie between 350 and
600 m/sec. Beyond these the vibration of the shell has a disturbing
effect.

11. The latest and the most exact results of measurement are
collected together in the following table of air-resistance given by
the firm of Fr. Krupp (see pp. 51 and 52). This table is given:

(a) for the Krupp normal shell, that is, shell with 2 calibre
radius of rounding of the ogival point, and with a flattening at the
front to 0-36 calibre ; here the air-resistance (kg) is
R’W&M

122
R*r is the cross-section in cm? (not in m?), 8 the density of the air
in kg/m?; ¢=1 for Krupp’s normal shape; for shell of 3 calibre
rounding radius, and 036 calibre of flattening,

% = 13206 — &02 — 0:0001024v;

W=

for shell of 5'5 calibre rounding radius and 0-36 calibre flattening,

% =1'4362 — ?—%é — 00001128%;

for shell of 3 calibre rounding radius and 0-26 calibre flattening,
%: 11959 — ‘“’T'G + 0-0001467;

for shell of 3 calibre rounding radius and a sharp point,
1 477
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50 On air-resistance [cH. 11
for bullets of the form of the S-bullet,

12268 + 0000591 59.

f(

(2

In Table A the numerical values of 10°

are glven as 10°K.

For example, with R*w =1 em? with 6 =1-22 kg/m?, the air-resist-
ance per 1 cm? of the cross-section of an ogival shell of 2 calibre radius
of rounding and 0'36 calibre of flattening of the point, at v+ =500 m/sec

= (500)* x 3998 x 10~ = 0999 (kg)

The experiments showed that the curve f(v):v* has an inflexion
at about v=480m/sec, and that at high velocity it appears to
approach asymptotically a horizontal line; that is the quadratic law
holds again at high velocity.

But the experiments showed further that the former assumption
did not hold of an air-resistance 1V proportional to a single factor of
shape, independent of the velocity v.

Speaking more strictly, for every form of shell another form of
the air-resistance function f(v) is required.

Ritter von Eberhard has now reached the point of splitting up
with sufficient accuracy the air-resistance into two parts, of which
one factor ¢ depends on the velocity v and on the shape, and the other
f(v) depends on the velocity alone.

. 1 .
These values of ¢, or rather of — are given above for many shapes

of the shell, with the exception of the purely eylindrical shell.

(b) for cylindrical shell

Rerdf(v)
122

and the numbers for 10° f u ) , denoted by 10°K for brevity, for such

W=

shell, are set down 1n Table B.

On p. 53, the results in figure ¢ are for Krupp 10 cm normal shell
and for cylindrical artillery shell: in figure b the results are for
infantry bullets, and at the same time the results of Charbonnier
and Siacci are given.

Figure ¢ shows the variation of the resistance W itself, for the
values of 8 =122 kg/m? and R*r=1 em?

The corresponding curve is seen among other things to be capable
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TABLE A. 10° K for 10 cm Krupp normal shells.
v v , v v v .
m/sec 100K m/sec 100K m/sec 100 K m/sec WK m/sec 10° &
150 | 1-190 334 | 2566 525 | 3976 785 | 3520 1045 | 3292
155 | 1190 336 | 2654 530 | 3970 790 | 3514 1050 | 3289
160 | 1-191 338 | 2739 535 | 3-963 795 | 3507 1055 | 3-287
165 | 1-191 340 | 2822 540 | 3956 800 | 3-502 1060 | 3284
170 | 1'191 3192 | 2902 H45 | 3949 805 | 3496 1065 | 3-282
175 | 1191 344 | 2979 || 550 | 3941 810 | 3-491 1070 | 3-279
180 | 1-192 346 | 3:051 555 | 3933 815 | 3485 1075 | 3277
185 | 11192 348 | 3°115 560 | 3925 820 | 3480 1080 | 3275
190 | 1-193 350 | 3174 565 | 3916 825 | 3474 1085 | 3273
195 | 1-194 352 | 3231 570 | 3907 830 | 3469 1090 | 3-271
200 } 1195 354 | 3286 575 | 3899 835 | 3463 1095 | 3-269
205 | 1196 || 356 | 3-337 580 | 3-890 840 | 3458 || 1100 | 3267
210 | 1198 358 | 3-384 585 | 3881 845 | 3453 1105 | 3265
215 | 1-200 360 | 3-427 590 | 3871 850 | 3448 1110 | 3-263
220 | 1203 362 | 3468 595 | 3862 855 | 3443 || 1115.| 3-262
2256 | 1-207 364 | 3506 600 | 3852 860 | 3-438 || 1120 | 3260
230 | 1-212 366 | 3541 605 | 3841 865 | 3433 || 1125 | 3-259
235 | 1218 368 | 3574 610 | 3830 870 | 3-428 1130 | 3-257
240 | 1-225 370 | 3605 615 | 3818 875 | 3423 1135 | 3-256
215 | 1233 372 | 3633 620 | 3807 880 | 3-418 1140 | 3-255
250 | 1-243 374 | 3659 625 | 3796 885 | 3413 1145 | 3253
255 | 1255 376 | 3-682 630 | 3784 890 | 3-409 1150 | 3:252
260 | 1270 378 | 3703 635 | 3773 895 | 3-404 1155 | 3-251
265 | 1-288 380 | 3722 640 | 3761 900 | 3-400 || 1160 | 3:250
270 | 1-309 385 | 3-761 645 | 3-750 905 | 3-395 1165 | 3-249
275 | 1-334 390 | 3792 650 | 3-740 910 | 3-391 1170 | 3-248
280 | 1-363 395 | 3819 6556 | 3729 915 | 3-386 1175 | 3-247
282 | 1:376 400 | 3843 660 -| 3719 920 | 3-382 || 1180 | 3-247
284 | 1'390 405 | 3864 665 | 3709 925 | 3-378 1185 | 3-246
286 | 1405 410 | 3-883 670 { 3-700 930 | 3:374 1190 | 3-245
288 | 1-421 415 | 3900 675 | 3690 935 | 3-369 1195 | 3-245
290 | 1:439 420 | 3916 680 | 3681 940 | 3-365 1200 | 3-244
292 | 1+458 425 | 3931 685 | 3672 945 | 3-361 1205 | 3-244
294 | 1:478 430 | 3943 690 | 3664 950 | 3-357 1210 | 3-243
296 | 1-500 435 | 3955 695 | 3655 955 | 3353 1215 | 3-243
298 | 1-524 440 | 3965 700 | 3647 960 | 3-349 1220 | 3-243
300 | 1-551 445 | 3973 705 | 3638 965 | 3-345 1225 | 3242
302 | 1-580 450 | 3981 710 | 3-630 970 | 3-341 1230 | 3-242
304 | 1613 455 | 3-987 715 | 3622 975 | 3-338 1235 | 3-242
306 | 1-648 460 | 3992 720 | 3614 980 | 3334 1240 | 3-241
308 | 1687 465 | 3'995 725 | 3606 985 | 3-330 1245 | 3-241
310 | 1-730 470 | 3997 730 | 3598 990 | 3-326 1250 | 3-241
312 | 1-779 475 | 3999 735 | 3590 995 | 3-323 1255 { 3-241
314 | 1-832 480 { 4000 740 | 3583 || 1000 | 3:320 1260 | 3-240
316 | 1-888 485 | 4000 545 | 3°575 || 1005 | 3:316 1265 | 3-240
318 | 1-947 490 | 4000 750 | 3568 || 1010 | 3313 1270 | 3-240
320 | 2010 495 | 3999 7556 | 3561 || 1015 | 3-310 1275 | 3240
322 | 2:079 500 | 3998 760 | 3553 {| 1020 | 3-307 1280 | 3-240
324 | 2152 505 | 3-996 765 | 3547 {| 10256 | 3-304 1285 | 3240
326 | 2229 510 | 3992 770 { 3540 j| 1030 | 3-301 1290 | 3240
328 | 2:308 5156 | 3987 775 | 3533 || 1035 | 3-298 1295 | 3240
330 | 2:391 520 | 3982 780 | 3527 {| 1040 | 3295 1300 | 3240
332 | 2478
. 4—2

T oeee - L

Cr o
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52 On air-resistance [cH. 11

TasLe B. 10°K for 10 em cylindrical shells.

Vo

mjsec | 10°K Yo toyeer il Yo 108k |l Yo | 108K Yo | 108K

m/sec m/sec m/sec m/sec

100 | 4:160 [} 285 | 5652 || 440 |8-381 | 630 | 9318 940 | 107117
110 | 4173 || 200 | 5780 || 4560 |8448]| 640 | 9356 960 | 10-144
120 | 4190 || 295 | 5919 || 460 |8512| 650 | 9393 980 | 10-168
130 | 4209 || 300 | 6071 || 470 |85673) 660 | 9430 || 1000 | 10-189
140 | 4232 [| 305 | 6243 || 480 | 8632 | 670 | 9466 || 1020 | 10207
150 | 4260 || 310 | 6430 || 490 | 8689 680 | 9501 1040 | 10-224
160 | 4295 || 3156 | 6608 || 500 | 8744 690 | 9535 1060 | 10-238
170 | 4337 || 320 | 6779 || 510 |8796 ) 700 | 9568 || 1080 | 10249
180 | 4:387 || 325 | 6:935 j| 520 | 8846 | 720 [ 9631 || 1100 | 10-258
190 | 4:443 || 330 | 7074 || 530 | 8895 | 740 | 9692 |[ 1120 | 10264
200 | 4510 || 340 | 7:305 || 540 (8943 | 760 | 9747 || 1140 | 10268
210 | 4589 || 350 | 7-495 [} 550 | 8989 780 | 9:800 || 1160 | 10270
220 | 4680 || 360 | 7648 || 560 {9033 800 [ 9850 | 1180 | 10270
230 | 4783 || 370 | 7777 {| 570 [9076 [ 820 | 9897 j| 1200 | 10-270
240 | 4898 || 380 | 7-888 || 580 [9-118( 840 | 9941 1220 | 10270
250 | 5025 || 390 | 7987 || 590 |[9-159 || 860 | 9982 || 1240 | 10-270
260 | 5168 || 400 | 8076 || 600 | 9200 880 [10020 || 1260 | 10-270
270 | 5335 || 410 | 8161 || 610 | 9240} 900 {10055 || 1280 | 10-270
275 | 5430 | 420 | 8239 || 620 {9279 920 {10-087 || 1300 | 10:270
280 | 5536 || 430 | 8312 |

of representation for a long distance by a straight line W=av—5:
this justifies the laws of Chapel, Vallier, and Scheve.

Finally the figure d shows how the true K curve would be re-
placed by the lines (1), (2), (3), (4), when the assumption is made
throughout of the quadratic law of air-resistance f () = ¢;»* (Newton
and others), the cubic law f(v)=cn* (Bashforth, England), or the
biquadratic law f(v) = c* (B. Piton-Bressant, France), or the
binomial law f(v) = ¢ (1 + bv) (Didion, France).

Description of experiments. |
1. The most important of the experiments which were applied to the
determination of the laws of air-resistance, were the following :

) (¢) Research of the Metz Committee, Didion-Morin-Piobert 1839-40,
chiefly with round shell; velocity 200 to 600 m/sec: measuring apparatus, the
ballistic pendulum. This research was repeated in 1856-58 in Metz, with the
help of the electrical chronograph of Navez.

(b) English experiments of Bashforth in the years 1866-70 with shell of
various calibre (7'6 to 22'9 cm) with the height of head 112 calibre, length of
shell 2:54, and with velocity ¥=230 to v=>520 m/sec.
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54 On air-resistance [cH. 11

(¢) Russian experiments, of N, Mayevski at St Petersburg in the year 1869,
with shells of different calibre, different height of head (mostly 09 calibre)
and different length of shell (mostly 2:01 calibre); v=172 to »=409 m/sec.

(d) F. Krupp’s experiments of 1879-96, on the Meppen shooting range,
with shells of different calibre, different length (28 to 4 calibre), different height of
head (1:31 and 10 calibre; mostly 1'3 calibre); »=150 up to 910 m/sec.

(¢) Dutch experiments of W. C. Hojel 1884, with shell of 8 to 40cm
calibre, length of shell from 2'5 to 4 calibre, with a head of 1-31 and 1-33 calibre ;
the velocity from v=138 to 660 m/sec; individual experiments were made with
high velocity (up to 1500 m/sec).

(f) Simultaneous experiments of the firm F. Krupp (O. von Eberhard)
with artillery shell and of K. Becker and C. Cranz with infantry bullets, 1912.

The first research was carried out with the help of a spark chronograph,
over many short ranges, of about 50 m, at Essen ; with large calibres by measure-
ment of initial and final velocity on short ranges of 2 to 3km. The other
research was carried out in the ballistic laboratory with 8 mm bullets of various
forms and by two methods; by means of a ballistic kinematograph and by
means of a spark chronograph with photographic record; length of range 15
to 20m,

Consult the account published in No. 69 of the Artillerist-Monatshefte of the
year 1912,

2. For small velocities (from 30 m/sec upward) numerous measurements
are in existence. They were carried out by means of falling bodies or with
vertical guiding wires, or curved paths; by the measurement of wind pressure
by manometers of various sorts; by experiments with whirling apparatus, where
a body of given shape is carried round in a circle; by experiments with the
beam of a balance, where the body is fixed to one side of a balance, and the
whole balance is drawn up in the air.

For details consult the account given by Finsterwalder.

§ 11. General remarks on the methods employed in carrying
out the experiments on the laws of air-resistance. Critical
remarks, and proposals. : :

1. For the most part the horizontal components v, and v, of the |
velocity of a shell are measured at the beginning and end of a hori-
zontal line of length a. .

The length « is chosen of such magnitude, that it is considered
satisfactory to assume the path of flight as rectilinear, but unavoid-
able errors in the measurement of v, and v, make it desirable that a
should not be too short.

The diminution of the energy of the shell is then taken as due to
a definite mean value W of the air-resistance.
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This magnitude W, calculated from P£2_g—v”’= Wa, is then said
to be the air-resistance corresponding to the velocity
v="4% (v +v)

Thus W (v) is obtained, and on the :1ssumption ofalaw W=cv,
the constants ¢ and n are determined by the method of Least
Squares. '

This method becomes more free from objection, the smaller the
length a is chosen. If we only desire to know the dependence of the
air-resistance on the velocity v, then all the other quantities, viz., the
weight of the shell, the shape of head, length of shell, rifling, ete.,
must be kept constant.

The law so obtained of the function W (v) will hold, strictly
speaking, only for shell, of which the calibre, shape of head, length
of body, velocity of rotation, etc., differ little from the corresponding
quantities in the shell employed; because the resistance is not exactly
proportional to the cross-section and to a single coefficient de-
pending on the shape of the head.

Suppose the effect of the shape of the point is only examined for
a definite velocity v; then all the other quantities must remain un-
altered, and the shape of the point is varied.

As a matter of fact such a method of determining the air-resist-
ance does not seem to have been used.

Vibration of the shell seems frequently to have taken place, of
which the amplitude has not been measured closely. Moreover the
length of the measurement line was formerly chosen of such a
length (6000 m and more) that the straight-line path of flight and
a constant avérage value of the resistance 1 over this line cannot
be assumed.

In such cases it is supposed sometimes that the horizontal com-
ponent of the air-resistance for a given velocity v is identical with the
air-resistance for the horizontal component of v, or that

J(v) cos 8 =f (v cos 0).
Finally sometimes in the calculation of the air-resistance, based
on the measurement of the velocity of the shell at the ends of a
trajectory very much curved, an approximate method of calculation
is used.
Thus on the basis of an uncertain theory the path of flight and
the air-resistance W would be calculated ; then tables for calculation
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would be drawn up; and these tables would then be employed to
calculate the path of flight in some other case.

Finally the calculated results would probably be compared with
the results of actual fire. And so one uncertain theory is checked
by another.

If the construction of the laws of air-resistance is to be rational,
all theory must be excluded, and the research so directed, that the
law of kinetic energy, or some other law of Mechanics equally appli-
cable, may be employed in a pure form.

2. F. Bashforth employed the following systematic procedure.

Near the muzzle of the gun several screens were set up at a small
equal distance Az behind each other. The first screen was at a dis-
tance # from the muzzle; denote the velocity of the shell by ¥, and
the air-resistance by W (v).

A shell is fired horizontally through the screens; and then by
means of the Bashforth chronograph the time differences At, A¢,,
At,, ... are measured, during which the shell flies from the first screen
to the second, from the second to the third, and sc on. It is re-
quired to determine thence the resistance W, that is the product of

the mass § and the retardation —@ of the shell. Now

dt

_dr 1 _dt,

Tdt v dn
thence by differentiation with respect to z, we get

_Ldy_ v Ay dedt 2
e d @ U dde " de

'Pdv P d

R{o] t,ha.t W——;Et——-i-; Zi_—.ib?‘

In the series of the measured time intervals A¢, A, At,, ..., At is
the first term; in the corresponding 1, 2, 3, ... difference series, let
A”t, A™t, ... be the first term.

Thus by a fundamental theorem of Finite Differences

1 dt 1 7. III
| 2= ds = A [At— A"t + LA™t - LA®E ],
1. d2 1
’” —_ 17" ( — (
= (A E [At A"t 4 1AW~ 5A0E ]

= '(K‘w_)g [A” i(x—Az) - TIQ'AMt(z—Mz) + '916 a mt(a:—:;dz) o ]
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Pd
Thence W=_Ed_1;
_ P ry A W 1OA® ATAWG
_+E(_Aw_)"[At A"+ AW — 1A +13TAWE ]

In this way Bashforth calculates from his measurcments the air-
resistance W corresponding to the various velocities 2.

However rational this method may be, a doubt must be expressed
whether the apparatus, as constructed, can measure the time intervals
with sufficient accuracy.

Moreover there is not enough known concerning the resistance
which the separate screen wires experience, and this with a large
number of wires might influence the measurements to a considerable
extent.

3. Let us now consider a shell fired in such a way that the
shell itself shall trace photographically the whole path.

For this purpose shells emitting smoke can be employed by day
(compare, for instance, the patent of Semple and the corresponding
memoir of H. Rohne).

The later research of F. Krupp shows practically a fairly clear
visible continuous line on the plate, or if the smoke makes a close
determination of the path impossible on this method, the shell may
be bored at the side on Neesen’s method, and made visible by a light.
In this case the firing must be done at night, and a sharp punctuated
line will show the trajectory.

In this way the height y of flight of the shell is obtained for any
horizontal distance . Thence from the differentiations y’, ¥”, and
4™ with respect to #, we can calculate for any distance «,

(a) the velocity v by means of |
o NA YY)
V=N Ty v
(b) the angle @ of slope of the tangent from
g9
a— y,, ’.
(c) the time of flight ¢ by the equation

dt=dz ,\/ -9 ,
9
(d) the retardation due to the air-resistance

Yy VA +y"?)
39 e .

“wycos 8=
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Thus the retardation and the air-resistance can be obtained for a
large number of different values of # and consequently of ».

The advantage lies in the fact that the greater part of the table
of air-resistance is obtained at once from fundamental principles
from a single experiment.

The procedure rests on similar considerations, lately employed in
England by C. F. Close, and developed further in its mathematical
aspect by G. Greenhill and C. E. Wolff.

Shots are made with the same weapon for numerous angles of
elevation ¢ and range X. If the principle of tilting the trajectory is
applied to the individual paths of flight (compare § 5, example 6,
and §§ 38 to 40), a number of points are obtained on the path of the
longest trajectory; and these can be given by their polar coordinates.
Thence, as shown already above, the retardation due to air-resistance
can be calculated for each point, and with it the air-resistance as
a function of the velocity.

Nevertheless in the employment of this method of calculation, an
assumption has been introduced which contradicts more or less the
actual flight of a rotating elongated shell. The calculation above
holds strictly only when the long axis of the bullet lies exactly in the
tangent of the path, that is, when the bullet flies like a well-delivered
arrow.

But with rotating elongated bullets the oscillations of precession
must occur, because the direction of the tangent of the path in the
course of the flight makes a gradually increasing angle with the
initial tangent of the path. In consequence of this, the long axis
must lie askew to the tangent of the path, even when there is no
oscillation of nutation present.

The actual air-resistance is thus exerted against a bullet placed
askew, while the calculation employs the assumption of the normal
position of the bullet.

This is an assumption that generally underlies methods of approxi-
mation in the solution of special ballistic problems.

By this method, the air-resistance to a bullet cannot be obtained
closely enough in the case where the axis remains continually in
the tangent of the path, because the relation is not known between
the resistance of a bullet askew and the resistance of a bullet placed
normally, so long as the instantaneous angle of this position is not
known. '

Perhaps, however, this procedure might provide means of deter-
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mining this relation, by the employment of two lights in orifices, and
thereby measuring the angle of this skew position,

It must be noticed specially in the method of Close, that the
relation between ¢ and X is represented by an approximate mathe-
matical formula; and that the underlying errors are magnified by the
threefold differentiation; further that the tilting of the trajectory is
the cause of an error. The individual cases must then be examined
to see if these errors are so small that they may be neglected.

On these grounds perhaps the following procedure is to be pre-
ferred : the barrel of the rifle is clamped in a vertical position and
shiclded above. The bullet is again provided in Neesen’s method
with a side light. The shots are made at night, and fired off by
clectricity. At a convenient distance from the rifle a photographic
camera is set up, and in it a drum about 120 em high in the field of
view of the muzzle is rotated about a vertical axis with known
velocity.

A bromide-silver band is placed on the drum. In the vertical
upward flight of the bullet a dotted spiral line is shown on the
rotating band of the drum. The axis of ordinates is given by a cor-
responding shot with the drum stationary, and the abscissa axis
by artificial illumination of the muzzle of the rifle while the drum is
rotating.

In this way the abscissae of the separate points of the curve give
the corresponding time of flight ¢, and the ordinates the corresponding
height .

By differentiation, the velocity, ', and the acceleration, ¥, are
given as functions of ¢; and thence the air-resistance

w-_pr¥ _p
g

Thus by this method, in principle at least, and by appliances free
from objection, the whole table of air-resistance can be obtained from
the maximum initial velocity downwards.

It is evident that the error of the objective must be determined
by alignment on a distant horizontal line.

In vertical fire there are no oscillations of precession. On the
other hand care must be taken that rifle and bullet are chosen so
that no oscillations of nutation are present.

In carrying out such work many difficulties in detail would be
encountered, which must be overcome. Whether the procedure is
feasible and would provide useful results, is not at all certain.
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II. ON.THE INFLUENCE OF THE SKEW.POSITION OF THE SHELL ON
THE DIRECTION OF MOTION OF THE CENTRE OF GRAVITY.

§12. Let x denote the resistance that a plane surface of 1 sq cm
experiences, moving with glven veloc1ty v m/sec, in a direction per-
pendicular to itself in still air.

Then let it be assumed that the resistance of a plane surface of
Jfsq em is fx, under similar circumstances.

- If the plane is placed askew to the direction of motion B, so
that the normal N of the plane makes an angle « with B the direction
of motion, the resistance depends in some manner on a.

The resistance as a function of a is according to Newton = «f cos*a;
according to F. v. Lissl = xf cos a; according to G. Kirchhoff and
Lord Rayleigh

(4 +m)cosa
«f d+mcosa’
and according to Duchemin

2 cos?a
f 1+ cos?a

As to the direction of the resistance to a surface placed askew, it -
is always assumed that the thrust which the slanting surface ex-
periences is at right angles to the surface. :

In the sequel it will also be assumed that when the normal to
a surface of fsq cm makes an angle a with the wind direction B, the
resistance is at right angles to the surface and has the magnitude
«f cos™a where « denotes the resistance to 1 sq cm in perpendicular
movement at the same velocity.

Further it will be assumed that this law is equally true for an
infinitesimal element of surface, and that the re-
sistance against a finite part of the surface can -
be calculated by integration over the surface.

In the treatment of a shell, let a rectangular
system of coordinates in space be taken as a
basis. Let the shell be a body of rotation with
the axis of figure on the longitudinal axis of
the shell along the z axis. Let the base of the
shell be the zy plane. Let the direction of *
motion of the centre of gravity on the tangent
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§12] On air-resistance 61

to the trajectory be parallel to the zz plane, and make the given
angle a with the axis of the shell, on the 2 axis.

Everything is then symmetrical with respect to the zz plane; and
we have to determine the components X and Z of the air-resistance
in the z and 2 directions, as well as the position of the point of appli-
cation M of the resultant 4/(X2+ Z?) on the axis of the shell,

Let P be a point on the surface of the shell with rectangular co-
ordinates OFK=x, ED=y, DP =z; or with cylindrical coordinates,
£ EOD =%, radius vector 0D = CP=p, DP=z.

z
2

A
c g!“dz

4 P‘)

N ba dz
z
Pd?
T

0 2 D r3

Take a meridian section at P through the surface of the shell,
along the z axis or the axis of the shell; also a section through
P at right angles to the axis of the shell.

In the first section let ds = PR be an infinitesimal element of the
meridian curve of the surface of the shell. In the last section, which
is circular, let PQ = pdY be an infinitesimal element of the circle of
the cross-section.

In this manner an infinitesimal element of surface PSR is
taken at P, with surface df=pddds. The resistance on this surface
element (according to the first assumption) is directed along the
normal 4 PN and (according to the second and third assumptions) has
the magnitude xdfcos™w, where w denotes the angle between the
normal to the surface and the direction OB of the tangent to the
trajectory.

Let the normal to the surface 4 N make angles B,, 8., Bs respec-
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tively with the x, y, z axes. Now the cosine of the angle between
AN and the direction CP or 0D is equal to g—:, and so

cos B, = %E cos Y,

and cos 3, = %Sz_ sin' Yy, =
Further cos By =— gi,: s

(as in the figure where the meridian section through P is indicated).
If the direction of the tangent to the trajectory makes angles i, 2, vs
with the three axes, then
oS y; = 8in a, cosy,=0, cosy;=cosa,
thence  €OS @ = cos [B; COS ryy + €OS B COS iy, + €OS B3OS vys
dp

dz .
=E§cos%sma+0—a—scosa.

Furthermore the components of the normal reaction «dfcos™w of
the surface element df along the axes x, y, z are

dX = kdf cos™ w g—z cosY, dY =xdfcos™ w %Siﬂ 9y,
dZ = — kdf cosm o P

ds’
where m =2 according to Newton’s law, and df=pdYds. These
expressions for dX, dY, dZ are to be integrated over the part of
the surface of the shell exposed to the stream of air; and in them
Y is zero by reason of the symmetry with respect to the plane zz.

To obtain the distance {= OM of the point of application M of
the resultant of the air-resistance from the base of the shell, the
equation of the moment of the resistance components about O must
be written down. Herein only the x# component comes into con-
sideration, because the z component has no moment and the y com-
ponent is nothing. The normal resistance on the surface element df
has the # component

dz
m .
xdf cos™ w I cos ;

and this component cuts the axis of the shell, in A. The moment
arm 1s
0A4=00+CA=z+p2

’
4
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so that the moment is

xdf cos™ w (z+p %—g)%cos&
The integration of all these moments gives the moment {X of the
resultant. If X has been calculated, then ¢ is known.
The complete result is then laid down in the following formulae:

X= /cU' cos™ wpdzcosNAY  .iiiiiieiiinn 1)
Z=—ij cos™ wpdpdY  ceiiiiiiiiiii, (2)
Xt= « ff(z +p Z—Z) cos™ wpdzcos NdY ......... 3)
. dz dp
cosay—smaz-?cos?r—cosad—s. ..................... “)

Here X denotes the component of the air-resistance at right angles
to the long axis of the shell, Z that along the axis.

The resultant air-resistance #/(X? 4+ Z?) cuts the axis of the
shell in a point M, which is at a distance ¢ from the base of the
shell.

The angle B between the resultant and the axis is in general not
identical with the angle a between shell axis and the tangent of the
trajectory, but is given by tan 8= X : Z.

The factor « denotes the air-resistance against unit surface in a
direction at right angles to it, with the corresponding velocity v
of the centre of gravity of the shell, for which it is considered. On
Newton’s law m = 2, and m =1 when Lossl’s law is assumed as the
basis of the calculation. The equation p = f(z) of the meridian curve
of the shell is given by the shape. In the operation of the
integration, this is carried out over the part of the shell struck
directly by the air-resistance, or else over some part under considera-
tion; so that for the whole shell the calculation can be carried out
at once; with respect to z from the base of the shell to the point;

§ “with respect to p from the inside to the outside of the surface of the
shell, and finally with respect to % from one to the other limit of the
stream of air tangential to the surface; so that this is only from 0 to
27 when the whole curved outer surface is struck by the stream of
air; in other cases the limits are to be determined with regard to
the form of the shell and the angle a.
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Kummer and St Robert have carried out calculations of this kind
with the assumption m=2 (Newton) for many shapes. So also
W. Gross with the assumption m =1'(Lossl); mention however must
be made of the fact that the calculations of Gross are only approxi-
mate,

Similar caleulations of this sort have been made by de Sparre, v.

Wuich, Mayevski,

Y /d 2 Siacci, Charbonnier.
"f f / é/ Ezamples.

1. Resistance of the
) /
z .

R
outer surface of a circular
3
R
The equation of the meridian curve is p=R; so that

o>

cylinder, open at the top,
of radius & and height a.
Components and point
of resultant action to be
calculated ; on Newton’s
assumption m = 2,

—— R e

dp=0, ds=dz cosw=sinacosd;
thence
X=«kllsin%a ff cos3 3dIdz

Z=0, (since dp=0, and the cylinder is open above)
X¢{=«Rsinla f‘/cos3 3d9zde.

Since half of the curved surface of the cylinder is exposed directly to the air-
resistance, the integration is made only from 9= —4}= to 9=+43m, and besides
from z=0 to z=a; and so

X=4«Rasin?a, X¢{=%xRa?sin?q, and thence {=4a,
that is the point of application lies at the middle of the cylinder height.

If the cylinder is closed at the top by the circular area r%x at right angles,
then Z=xR:x cos?a (on Newton’s assumption) and

4a

X 2
tanB—Z—mtan a.

2. Cone, radius £, height % (see figure). Same assumption ; m=2.
The equation of the meridian curve, that is of the straight generating line, is

R
p=7 (h-2)
and thence
dp_ R d_s=~/(lz2+122) dp R
dz k' dz h ' ds WA+ RE’

hsinacos 34 Rcosa
JOEEy

COS w=
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and so

«fth
EEY

Z= h2+1t‘ff smacos.9+ cos:z) (h—2)dzd9

la"‘+]{2// slnacosS+/Lcosa> [ (/z. l)](/t—~)dzcoq.9d3

Integrated with respect to z from 0 to 4,

ff smacos.9+—-co~;a) (h—2z)dzcos3dI

cRAS . n 2
Xnm (sm a cos.9+7; COSa) cos 9dI
x K2h3 . yd 2
= W_z-i-l—f‘_) (sm acosd +E cos a) d9
« RA2(h2 - 2R%) . yi4 2
X¢{= ST (sm acosd+ 7 608 a) cos 3d9.
Thence it follows, for every angle a, that
h2—-2R2
-

Two cases are to be distinguished in regard to the integration with respect
to 9 (compare figs. @ and b); firstly the case where the whole curved surface of
the cone is exposed to the air-resistance, and this occurs when the angle a is
smaller than the angle which the axis of the cone makes with the side of it,

i.e., when tan a<5—f; and secondly the case where only a part of the surface of

the cone is exposed, that is when tan a>%.

h
are 9= —r and 9=+ = ; and since

In the first case (ban a <E>, the two limits of integration with respect to $

f cos®3d3=0, fc0329d9=n, fcos.‘)d3=0,

we have

xh2R¥rsinacosa
_22‘:32 0

kh2R2 (g sin?a+ %2 cos? a)

z= T .

In the second case (tan a>%) only that part of the surface of the cone is

exposed, for which cos w is positive (w=angle between normal and direction of
motion of the air); the integration with respect to 3 has then the limits where
a parallel to the direction of the air touches the surface of the cone; that is
for cos w=0, or

hsinacos 34+ Rcosa=0, cosI= —I?cot a.
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If y denotes the angle given by
coty =%Z cota, or y=arccos (% cot a) ,

the limits of integration are
=—m+y and I=+r—7y;

and we require for the integration with respect to
=~~~ =% these limits the three integrals

47—
f " cost 9d9 = % siny (24 cos?y),
—mrty

/coszsd}} =m—y—sinycosy,
i
= fcos.‘)d.‘) =2siny.
If we take !
e 2
/+ Y(sinmcos9+£cosa> cos3dI=P,
—— A
. R 2
f<s1na0033+-1:008a> dy=4@,
then -

Rz .
P= 2nsm‘asm'y(2+cos2y)+——Rsmacosnz(1r v- sm-ycos-y)-g-—cos asiny,

@=sin?a(r —y—sin 'yCOS'y)+4f

and when the angle y is expressed by -the angle q,

2
P=2 .<%c0a;2a+231n2 )N/(l—%cot a>+2TRsi_nacosml:-n-—arccos(%cota)];
Q=(7R§—cos2a+sln‘~’ )[w—arccos(ilf cot, a>]+¥sinac05a \/(1_%200"2“) 5

and thence for the case when tana >§:

«h3RP 7 «h*R2Q

=3 B+ R’ 2T Ry

3. Combination of cylin‘der and cone (same assumption ; m=2).

(@) TFor the case where tane <z B ; by simple addition we have

kh? R21r sin a cos a

‘ X=-§x1fasin2a+———m2———,
) 2R2 ' -
LR (sxin2 a +—z7§ cos? a) '
Z= yEmng T ’ '

o p oo g , ki2R¥rsinacosa h2—2R?
X¢=3«Ra?sina+ yEy 3 ,
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and 80

Bl 225
ga Blna+,"+[{2 a4 1 )cosa

{= héftm cosa
ga sin a+-—/;+—”.‘—

(8) For the case where tana >-§

. xh3RP
X=§xllasm’a+m ,
P xh2I2Q

T2+ RY)’

v o 2.0 g 3R 2-2R%
X¢=5«cRa?sin a+2(h2+1{‘) a 3

k-2
+ ‘3/Lm>P

and so

2yintade —te o/
c=§a sinfa+ IGEYE)
3
§asin2a+-—h—[)—
2 (A4 £2)

4. By approximate calculation on the basis of Lossl's Law (m=1) W. Gross
finds the following values for the resultant resistance ¥ to a shell with ogival head:
rounding radius, 2 calibres: W=« R%r (0-365541-3606 sin%a)} for angle a up to

25 , : W=xRir(0:3312+16344 sin%)} sina=03,

Here again « denotes the resistance of unit of surface moving at right angles
with the same velocity ; and so for a 2'5 calibre'rounded head «R?r x 0-3312 is the
resistance of this shell in the case where the axis of the shell lies in the tangent
of the trajectory.

As for the distance ¢ of the point of application from the base of the shell,
the following values are obtained by W. Gross for a shell 35 calibre long over-
all, and 1'5 calibre length of head of shell, 22 denoting the calibre:

sina=01]02[03|04[05|06 ‘ 07108
(=53]48|44 | 41[39|37(35|34 l 33 30R

The centre of gravity was distant 2:97 B from the base of the shell.

Thus even for a complete crosswise position (a=90°) the point of application
lies ahead of the centre of gravity. For very small angle q, the point of applica-
tion would lie somewhere about the middle of the head of the shell.

Under the assumption of Newton’s value, m=2, calculation shows that here
also the point of application lies in general ahead of the centre of gravity, and
near the point for small values of the angle a; so that ¢ depends on a. Itis only
for the right circular cylinder cut straight across, as well as for the combination
of cylinder and cone, for which the height of head A=0-41 R, that ¢ is seen to be
independent of a.

In this theory the velocity » of the shell is involved only in the factor x.

3 ”

[+
L
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Remark on the uncertainty of all such caleulations as
these, and on the necessity for experiment.

Against calculations of the previous kind the following must be
said: ‘

In the first place nothing certain is known of the three assumptions
employed at the outset.

Secondly, even when these assumptions hold good, no one knows
the most suitable value for m.

Thirdly, the flow of the air away from the shell, with waves and
eddies, has not been considered, and cannot at present be taken into
account mathematically in a satisfactory manner.

On the other hand no possibility exists at the present time of
proceeding in a manner free from objection, though this would be very
desirable, because the influences of the obliquity of the axis of the
shell make themselves felt in deviation of the shell and diminution
of the range.

On the dependence of the position of the point of application on
the angle a, Kummer (1875) has made numerous and accurate experi-
ments with bodies of shell-like shape, but with small velocities only,
and with no rotation. He investigated the relation between ¢ and a,
for a body of revolution.

For this he chose several different values of ¢ and investigated
the corresponding value of a, in the following manner:

The model of the shell (of cardboard, so as to increase the sensibility
of the method) was suspended freely on a horizontal axis, so that the
shell was moved in still air at a velocity of about 8 m/sec (by means.
of a whirling apparatus); the model of the shell being on an arm
over 2 m long, which was revolved about a vertical axis.

Kummer’s method was as follows : he determined the position of
equilibrium for a large number of positions of the transverse axis,
assumed by the body under the action of the air-resistance alone. The
distance of the transverse axis from the base of the shell was thus &;
then the corresponding angle a was observed, at which the long axis.
stood. _

All other forces of rotation must naturally be eliminated: above
all, the force of gravity must be removed by making the centre of
gravity come into the transverse axis by means of an internal
mechanism.
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Kummer carried out his observations for the plane, cylinder,
combination of cylinder and cone, hemisphere, and semi-ellipsoid,
and finally for a model of the Mauser bullet and the 4-pounder
Prussian shell. Some details of the arrangement of the research
were improved by Kummer in a second series of experiments.

The results of Kummer’s research may be given here for the
model of the shell with a height @ =112'5 mm of the cylindrical
body, radius R =375 mm, and height A=475mm of the ogival
head. He found

c-— |70|72l |86 88
86 68 43
92 | 94 98 | 100 | 102 | 104 | 106 | 108 | 110 mm
36 34 3332 |30 25| 23| 21|18

As the stream of air is directed at a continually decreasing angle
with respect to the axis, so the point of application approaches more
and more to the upper end of the cylindrical part (¢ = 1125).

For an angle smaller than o =18° the research gave no longer a
definite result. The Newtonian assumption gives for this case

¢= $aRw +a*tana (a the height of the cylindrical part)
$Rw+2atanda \ 2R the calibre

Putting a=0, we get {=a, in agreement with experiment: on
the contrary, the rest of the calculated and observed values of ¢ for
a are remarkably discordant.

Such experiments with a velocity of 8 m/sec cannot give the results
required in ballistics; because at velocities up to 1000 m/sec much
more is required, and this would naturally involve very serious ex-
perimental difficulties.

For if it is attempted to make such a stream of air act for a long
time on a stationary model of a shell, the stream lines of the air must
possess a uniform parallel motion in front of the model, and in addition
the velocity of the air must be the same against each square centi-
metre of the cross-section. Considerable expenditure of power is
then required, and special preparations for the measurement of the
directions and velocity of the air at every point are required, without
interfering with the flow of the air.

Probably the employment of Neesen’s method, described above,
will lead to results. In any case'a wide field is open for such work.
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IIT. CALCULATIONS RELATING TO THE SHAPE OF THE SHELL HEAD.

§ 13. When a is =0 in the formulae for X, Z, X¢ of § 12, it is
assumed that the axis of the shell lies in the tangent to the path.
Integration with respect to & must then be carried out from 0 to 2,

and then f cos ¥dY 1s zero, and so too X and X¢, (but the value of &

approaches a finite limit, which is obtained by calculating the value of
& at first for a small finite angle a, and putting a=0).

Then the resistance Z in the direction of the z axis must be
considered. But since

=_%

cos w s’ .
then writing « for p, in the case where the axis lies in the tangent
to the path, we have

W = 2me f (%)m wdz, where ds=/(da?+ d2).

Here « (v) is the resistance to unit surface for motion at right
angles, and for the velocity v corresponding to the motion of the
centre of gravity of the shell.

Ezxamples.

1. A shell, consisting of a circular cylinder of calibre 2R, combined
with a truncated cone of height %, and radius @ of the uppermost
section. Lossl’s and Gross’s assumptions, m = 1.

The resistance W, of the curved surface in the direction of the
shell-axis is

R

W1=2'ﬂ'l€] -’L'd-‘l’z'dz rTE]
. {”(@)}

R—a.

h b

dz = — cot Bdz, \/{1 + (g_;)ﬂ} =(£73;

R
so that W,= 2wk cos 8 f zdx = wmr (R*— a?) cos B.
a

where z—a=(h—2z)cot B, cotB=

To this must be added the resistance of the flat head

W, = kma?.
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The total resistance W= W,+ W,; compared with the resistance
« R of the direct cross-section of the cylinder of calibre 2R, thisis in
the ratio of

cos /8( ) R“

2. Ogival shell with a rounding radius = n half calibres. Lossl's
assumption, m = 1.

t

Let AC be the generating circular arc of the ogive, with centre 0,,
and P any point (22) of the circle. It is convenient to take the central
angle 40,P = ¢ as the independent variable instead of z. Then

O,Pcos p=0,D=0,4 — AD,
or aRcos ¢ =nR — (R —=z), x=nR(cos¢—n;nl),
de=—nRsindp, ds=nRde,

so that
W=2m« [ %g‘”d”
nR sin ¢d
= 27”‘_[%#3_(# nk (cos ¢ — ) nRsin ¢d

= 2meRn? f sin? ¢ (cos ¢ — ";) de.
0 noA
W = kR2mrn (sin oy — } sin® oy — oy cos ),
in which o denotes the angle 40,0, which is given by

cos _R R n—l
SY="T0R T T a

It may be mentioned in this connexion that in such ogival shells
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the semi-ogival angle v, the height of the head OC =k, and the radius
of rounding R, = 0,0 =nR, are connected in the following manner:
COSfy=,’—l~~ Siny:—’k— <i)2=Rl—i.
n R’ 2R 2R ’
ag for example

Rounding radius B’

ncalibres:  gp=| 0% |40 | 15 2 3
e o mead Q]—; =| o5 |oses| 1118 { 1323 | 1658

eIl I S N A
y=| 90° | 60° | as*11" | 41095 | 33°3¢

Similar calculations for different forms of head have been carried
out by W. Gross on the base of Lussl’s assumption, and by Ingalls
with the help of Duchemin’s Law.

Hélie(France)assumed that the coefficient ¢ of ogival shell increased
and decreased as the sine of the semi-ogival angle ; and this was
established by numerous experiments.

A. Hamilton (North America) stated that it was proved that the
value of 7 for a shell should be proportional to the mean value of the
sine of the angle that the tangent to the ogive at the various points
made with the axis of the shell.

This would make the ¢ values of two shells inversely proportional
to the surface of the heads of the shells.

If we put =1 for an ogive of 2 calibre radius of rounding, then
we should have

=100, 082, 071, 064, 058, 054,
for n= 2, 8, 4, 5, 6, 7 calibres.

But it will be shown later on, that these assumptions cannot be
considered to be proved.

The following table gives the specific resistance of shells of equal
calibre, as calculated on the basis of the laws of v. Lossl, Duchemin,
and Newton.

As is seen, these values are very discrepant.

Laboratory experiments at small velocity have been made in great numbers,
For example, Borda, Hutton and Vince have obtained the following results:

The resistance to a hemisphere is to that on the diametral cross-section as
0407 :1 (Borda 0405 :1; Hutton 0'413:1; Vince 0'403:1). Further the re-
sistance on a circular cone with angles 90° 60°, 51° 24’ bears to that on the plane
base the ratio 0691, 0'543, 0433 to 1, respectively.
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By experiments with cylinders 10 em high, moved axially, fitted with conical
heads 1, 15, 2, 3, 4 half-calibres high, and with a hemisphere, Didion arrived at
the result that the resistances in these six cases wero to each other respectively
as 7326, 53:99, 4774, 4429, 4069, and (for the hemisphere) 43-03.

With spheres moving Wwith velocity of 9 m/sec he found

W (kg)=002753 23

3 the weight of air in kg/m3, R2x cross-section in m2, and » the velocity in m/sec.

Ogival form of head Cone-shaped head

Height | Radius of —_ -

—_— g — S

[ ofhead | rounding | 2% | 8= | g% wi8 |l | g%
| in in CRE | o83 | sS85 || 285 | 0B85 | 28y
i 21 | 535 | 232 | 23S | 520 | 353
calibres | calibres | 3 % 3251328 | 3 B | H 55 | Az 8

e a~— = me A~ ]
2 =

05 05 0666 0858 0500 0707 0943 0500

0-866 1 0-504 0752 0-292 0500 0-800 0250

1118 1'5 0419 0675 0204 0-409 0663 0167

1-323 2 0-366 0617 0-156 0353 0628 0125

15 25 0331 0571 0127 0-317 0575 0100

[ §
. A, Frank averaged the numerical values of the air-resistance at low velocity
for bodies of very different forms on the basis of experiments, Finally F. v. Loss]
‘ was led by his research to the view that the resistance of a cone moving axially,
with semi-vertical angle of opening a, bears to the resistance of the plane base
area the ratio of 0'83sina to 1.
Further, according to his experiments the resistance of a sphere was one-third
' of the resistance to the plane diametral section (according to Lossl’s law it would
be 3).
All this shows clearly that this law cannot hold exzactly.

Based on the German experiments at the target, the relative
values for ogival shell according to W. Heydenreich would be

1 15 2 3 4 6 8 | calibres of

rounding radius,

1350 1 1200 1 11001 1000 | 950 | 850 | 800 [ 700 | 650

and these form values, other things being equal can be “immediately
applied to all shells, independently of calibre.”

After further developments W. Heydenreich himself appears to
infer the inapplicability of the above numbers as fixed form values,

ey
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and to introduce a doubt as to the universal transference of the form
value from one shell to another.

It will be shown in the sequel how the form values were obtained,
and how a figure obtained in this way must at-best be a makeshift.

Critical remarks on experiments to determine the effect of
the shape of the shell head.

~ The initial velocity »,, range X, angle of departure ¢ and air density are
observed. By means of approximations from the shell-calibre 2R and shell-
weight P the product 8 is obtained. Here 8 is a factor of adjustment to com-
pensate for the errors caused in the integration of the differential equation of the-
" problem. (See Chapter V.)
Division by 8 thus gives the ¢-value in comparison with a normal value ¢=1,
which must be defined in an agreed but arbitrary manner.

(2¢) When the i-value for any given shell on the basis of the same value of’

29, P, X, 2R, P, 8, is calculated by means of two different systems of solution,
based on the same laws of a.fr—resistance, the same value is not always obtained;
discrepancies up to 13 °/, can be met with.

The reason of this is that the compensation for the errors of integration in the
different systems of solution has been more or less successful (compare § 33).

Even in the same systems of solution (see for example Siacci II) the errors, for {
different departure angles ¢ and ranges X, of the corresponding 8 values are not
the same.

Suppose for example a calculation is made grounded on Siacci II, and Bis
taken out of the 8 table, and 7 is thence determined; a part of the error in 3 is.
then transferred to the value of <.

(b) Moreover as stated the air-resistance is not exactly proportional to
the cross-section of the shell. But in the calculation of ¢ this proportionality
has been assumed ; and so again an error ensues. This error too appears in the '
i-value in the calculation. :

Now the more two shells of the same calibre differ from each other in shape
of head, the more will the fact that the resistance and cross-section are not pro-
portional to each other make itself evident in the calculated value of 2.

(¢) The air-density & is in fact variable, because it depends on the height.
of the flight of the shell. But in the calculation the air-density will have been
assumed constant, and either equal to that on the ground, or to some mean value
of air-density; here again an error arises, that also affects the coefficient 1.

(d) As stated above, the resistance is not exactly proportional to a single
coefficient ; the relationship is really a very complicated one, depending on the
shape. .

But in the calculation of its value this proportionality is assumed.
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(e) If the angle of departure ¢ is measured corresponding to the same
shell, the same initial velocity v, and the same air-density 8, for many ranges JX,
the 7 values of the shell can be calculated from each separate range.

But it appears frequently that tho series of the values thus obtained is not
constant.

If the solution of the ballistic problem was exact and complete, and if the
long axis of the shell remained steadily in the tangent of the trajectory, in
accordance with one of the assumptions of Sections 3-5, the ¢ values would
necessarily be equal.

As a matter of fact the calculated ¢ values vary, and in some of the new
infantry bullets to a very marked extent from one trajectory to another.

The fundamental cause of this alteration in the form-coefficients arises firstly
from the fact that the reduction factor 8 is different for the different trajectories
of the same shell; and secondly in that the change of i with the shape and
velocity has not been considered, or insufficiently; thirdly in the fact that the
shell is to some extent performing violent oscillations in the air.

In this last case the calculation is inexact because the calculation of the tra-
jectory should take into account the oscillation of the shell. As this is not the
case, and as moreover approximate methods are employed here, the errors arising
out of it must give a variation of the form-coefficient 2.

Conversely however this variation may not be employed for the quantitative
measure of the extent of the oscillation.

On these grounds no certainty can be expected that the values of ¢ obtained
in this manner can settle the true value of form ; and still less that the results
are generally valid.

§14. Calculations concerning the most effective form of head of
a shell. The August-head.

The problem is to determine that profile of the head of a shell
which at given velocity shall give a minimum resistance. In the figure
the long axis of the shell is taken as the axis of =, and the y-axis
stands at right angles to it. The half-calibre R = BB, = CC, is given
and the height A= AB =z, — %, and the front surface is at a given
distance @, from the origin of coordinates O. The question is to
determine the meridian curve A,B,, such that by its rotation about
the axis of z the surface generated shall have the least resistance,
when the shell moves with given velocity » in the direction C4 in still
air, or when the air streams past with the same relative velocity in the
direction 4 C against the head of the shell. Here « (v) may denote the
resistance normal to the surface per unit area. The resistance to the
complete head B,A4,4,B, is to be calculated and made a minimum.

This leads to a problem in the Caleulus of Variations. The following
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result is stated without proof. When it is required to determine y as
a function of # (curve 4,B;) for which the given definite integral

b .
j Fle,y, v,y ... )de

is a maximum or minimum, the differential equation -
0=F i(@) & (QE)_
T 0y dax\oy/  da*\oy’
requires to be integrated. The constants of integration will then be
calculated as follows.
Suppose first the ends (z,y,), (#:%) of the corresponding branch of
the curve are given; and that then

T=2, Y=1,, and x=a;, y=y,.

Let the point (2,4,) be fixed at B,; and on the other hand let the
other point (z,y,) be capable of sliding along a parallel to the y-axis;

4 B, P
R
o4 €z
~, b — .
P ! ;
H . ]
;'——-’4"1;'&\ - E x
N e e 3C,
B,

that is, let the desired curve run from the fixed point (2,7, to a line
x =, parallel to the y-axis, and end there. Then if 2=u,, y=1y,;

and if z = x,, g—g = 0, from which the constant can be calculated.

This last case is the one before us; for B, is fixed, and 4, lies on
the vertical 4,4, produced as required, since the height % of the head
is given.

Let A4,B, be part of the curve in question, I’ any point on it; and
ds the element of the curve at P. By rotation of the element ds
about the axis of z an infinitesimal zone of surface 2wyds is made,
which is the element df of the outer surface of the head of the shell.

If a 1s the angle between the direction of motion (the z-axis) and
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the normal to the surface element, on the assumption of Newton's law
the resistance on the element of surface is

deCOS’a =K. 27;—:;/(13 (g_f_)’

directed along the normal to df.
The component resistance along the z-axis is
dy\* _
x.2myds (%) = 2wy dy T(@jz
dy
Denote do or &’ by ¢; dy or ', or 1 by p. Then the sum of the
dy T dx SR A

x components of the resistances against the curved surface of the
head of the shell

B yd d
= Y _ I
W= 27r/c‘,‘yo 115 27mf1 T (2)

Here y is the independent variable, and the function under the
; i V=V = Y
mtegral is ¥ (y, 2') = = il If the rule (1) of the Calculus
of Variations is to be employed, it must be noticed that here = and y
have exchanged their réle; that is, the differential equation to be inte-

grated is
v dony
or dy \oz’
Since only y and «’ occur in v, but not «, then %‘g =0, and so
AN
0= @ (8—as7) S = constant,.
N _o_ —2y .
Now & "3 A+¢r
—-2qy _ _n+gy
so that Trgy constant = - 20, y=0 7

Moreover dz=qdy = qC 4 (1 + qﬂ)q: A +¢y dg,

} : %w=(2q+3q9—$>dq.

The solution of the problem is thus given by the simultaneous
" equations

z2=C(¢"+ %$¢* - logqg+ C), y=g(1+q’)". ...... 3)
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Here is the equation of a curve in the form z = £, (¢), ¥ = fi(g), with
parameter q.

When C and C, are determined, the curve can be discussed and
traced by points. It appears that in the general case the curve has
a cusp S, and two asymptotes; the first parallel to the z-axis, the
second parallel to the y-axis. The first and lower branch of the curve
extends from p =43 to p=0: the second and upper branch from
P = +/3, that is from the cusp 8, to p=o0.

It will be shown later that only the first branch S, B, comes under
consideration here.

As to the determination of the
constants C and C, it was worked out
in the following manner by N. v.
Wuich (1882) and later by August
(1882).

The first condition requires in any
case that when a=ag=2,+h%, y=R,
since the head of the shell is to make
a direct prolongation of the cylindrical
part. Also the upper head surface,
A, 4,, should be as small as possible, and so the ordinate SS, of the
cusp S, should be the radius AA of the head surface at the forward
flat end of the shell.

dy

The condition dg= 0 shows that the curve ordinate ¥ hasits mini-

y

—_— -

mum value for q=%, or p=4/3, at the cusp S§,, and the angle

between the tangent and z-axis = 60°.
Thence the two conditions for the calculation of C and C, are the

1
9= V3

August has examined the corresponding solution in detail;
Armanini and Lampe however have shown that his solution is incorrect.
The latter proved numerically that with the same calibre 2R of the
cylindrical part of the shell, and with the same height & of the head,
a hyperboloidal rotation surface can be found, with plane front surface,
giving a resistance somewhat smaller than the surface of August.

The error of August’s calculation lies in the fact that the part of
the resistance due to the plane head surface 4,4, has not been taken
into account in the correct way.

following: for z=a,+ h, y must = R; for z = z,,
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The total resistance against the curved surface of the head of the
shell and against the plane head surface is to be made a minimun,

The variation of the end point A, on the parallel to the y-axis
influences not only the meridian curve 4,B,, but also the head surface
AAp2.mor ylm

The total resistance against the head of the shell is

n yd, 2 yd
W= 27r1c.,.0 in—?;z + 2mre y'%.

Here the first part denotes the resistance to the plane head surface,
along which ¢ =0, since the head surface is at right angles to the
z-axis; the second part is the resistanee to the curved surface.

Let the first integral be divided into two parts,

o= a1 1

R ydy (B ydy R’ f
o140 J,1+0° yay.

The following is thus to be made a minimum

B R
W =2m« (1;__[ ydy) + 27wk _M

This is equal to

Yo 1+ qz
= kR — 27k f ) d,
uo( +q Y
= xR — M
kR — 2mri JTig
To make W in this expression a minimum, the integral

g dy
Yo 1+ q2

must be a maximum, since xR?m is constant,

The function under the integral is now
2

¢_1+¢;
and the solution of the differential equation
0= gi;’ - % (a;’) +..
gives S—Z’ = constant, or ¥ ?—W 20
= g (1+ g%
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and in addition, with dz = gdy, we have, as above in (3)
o= 0@ +1¢~logg+C), y=5(1+q
The integration constants ¢' and C, are to be determined from the

conditions: y = R for z =a; g—j:: 0 for & =, (see the explanatory

remark above).
Since the integral to be treated is
yody . [9yde
L+¢ 1+g%
therefore
_ Yy oF_ 1+yt-22  1-y®
iy &Y Ay YUy
and this =0; so that for z=41,, ¥'=*1; as is easily seen, only the
upper sign comes into consideration, when a real curve is to be

employed.
Thus the slope of the tangent of the curve with the z-axis must
not be 60°, but 45°, at the end point 4, of the part of the curve 4,B,.
That a maximum of the integral arises in fact under the assump-
tions of the mathematical data, and with it a minimum of W, is seen

2
from the second variation, 27{: ; this will be

¥y (y*=3)

‘ A+y%y

Since that branch of the curve under consideration is drawn, for
which the asymptote is parallel to the z-axis, and since the curve
stretches from the point B, to the point A, where the slope of the

=+

tangent is 45°, y and % are positive, and ¥ < 3, and so 57 is nega-

tive, and the integral is a maximum. (Kneser has examined the
conditions more fully.)

Remarks on the preceding solution of the problem.

(a) It is unlikely that the Newtonian law can be applied to the
high velocities which are here to be considered.

(b) The normal resistance on a surface element df is not merely
dependent on «df and a, and so not exactly equal to xdf cos*a, but
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1s probably also a function of the distance y of the surface element
from the long axis-of the shell.

(¢) The shape of the shell is involved in the air-resistance
function « (v).

The influence of friction is parallel to the axis, and perpendicular
also to the profile line of the shell, since the shell rotates; wave and
eddy making are neglected completely.

The following will show where the above theory leads, when the
outward flow of the air from the shell, and
the wave and eddy making are not taken
into account.

It might be tacitly assumed that the
curve in question y =f(z) has always a
finite differential coefficient, and yet with
an arbitrary ordinate y, of the initial
point A,, a eurve might be imagined between A4, and B, as pro-
file of the curved surface of the shell, made up of a broken line
A4,D,B,.

Suppose this to consist of the two straight lines 4,D, and D, B,,
making equal angles with the z-axis at any arbitrary angle 8 (the
point D, can then easily be constructed geometrically from the
assumed angle ).

Then along A4,D, B, the value of p is equal to £ tan 3,

p*=+tan? B, or ¢*=+cot?B.

¥

Then will

2
W=«Rmw — 27« gid;i—szw——Q o VB 'B fdy,
Yo

(since cot® B is constant) we have
W = R — kmr cos® B (B2 — y?).
The angle B can be chosen as small as desired; and then in the
limit
W=xRor—xw.1.(R—y?)=cmyd
And in particular if 4, is placed on the long axis (y, = 0), the

B limit of air-resistance W against it will be zero (Legendre.and

Weierstrass have remarked already on this solution).
No one however will suppose that the resistance to shells of the
form I, or II, or III will be very small.

C. 6
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The reason for this apparent contradiction lies in the fact that the
outflow of air from the shell has not been
taken into account.

On these grounds such theoretical calcu-
lations can have no practical importance.
Experiment can alone decide the most suit-
able form of the head of a shell.

Moreover in relation to this subject it
may be mentioned that many things indicate
the essential im portance of the rear end of the
shell.

The shapes in IV and V were put forward by
d’Alembert in 1744 and by Piobert in 1831; the egg
shape by Robins; a truncated cone on the rear end
of the shell by Dreyse in 1840 and Whitworth in 1860 ;
as well as a sharp-pointed head by the latter and by
Hebler,

The torpedo form is doubtless useful on purely
hydrodynamical principles; but the need for the
stability of the shell in the bore and in flight in the
air, and other practical reasons are opposed to this
form of shell.

IV, CALCULATION OF THE DENSITY OF THE AIR 9,

§ 16. The air-resistance, according to the preceding, depends
above all on the density of the air surrounding the shell.

It is réquired then, from the temperature of the air ¢°C., the
barometer height H, mm, and the percentage of moisture in the air,
0 calculate the weight 8, of 1 m? of air.

The weight of 1 cubic metre of perfectly dry air is 1-29303 kg,
at sea level in latitude 45°; or 129388 kg in Berlin, latitude 52° 30’
and 40 m above the sea. At the same time the weight P of 1 m?® of
dry air at t° C. temperature, and at H, mm barometer height, in ac-
cordance with the laws of Mariotte and Gay-Lussac is given at
Berlin by

H, - 1

P=1'2939.W). H—(}o‘mt: ............... (1)

But air contains moisture, and therefore 8 < P; because the vapour
of water, which the air holds, has only § the weight of an equal volume
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of dry air. The height of the barometer refers to the pressure of the
moist air.

We have to imagine then that water vapour of tension ¢ has
penetrated into one cubic metre of dry air, and that in consequence
a certain quantity of dry air has disappeared, so that the pressure is
the same as before.

Let the dry air which remains behind in the cubic metre weigh
G, kg; the pressure due to it is given by H, mm. Let the water
vapour which has flowed in weigh G, kg, with a pressure ¢ mm.

Then according to Dalton’s Law that the pressure of the mixture
is the sum of the partial pressures, which each gas would have if it
filled the space alone,

Hi=H +e ccorrviiiiniiiiiininnnnnn. 2)

Introducing this assumption, we have to consider that at first
the cube was filled with G, kg of dry air, at a pressure H,. Then
according to the Boyle-Mariotte law we have

G, H H,—e
-F = E‘-o Ho D R TR E T PRI (3)

Now, if only the G, kg of water vapour was present in the m? at

a pressure e (weight per m®§ P), then practically

G, e
iy R — (4)

o

These values

Hy—¢ e
G1=P—}?~—, and G2=%PE,

0

introduced into the equation & = G, + G, give

P
8=E(Ho—%e), ........................ 5
or, frora (1)
- 12939
) (kg/ms) = 760 (1 ¥ 000367t) (Ho - %e) ......... (I)

When the air is saturated with vapour then e= X (tension of
water vapour at ¢° C.), and & can be taken from the tables.

If however this is not the case, then e is a fraction of E; let
e¢=sE ; and 100 s will be given as the hygrometric percentage in the

table; then
12939 H, 273 sk

760 T3 +1 Ol grm oy

Thus ¢t is the temperature of the air in degrees Centigrade
{(Celsius).

8=

......... (II)

6—2
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s is the relative moisture, that is the ratio of the tension e of the
water vapour actually in the air to the tension E of water vapour in
the case of saturation (for £ consult Table no. 4). 100s is given
directly by Koppe’s or Lamprecht’s hygrometer.

H, the barometric height in mm, reduced to 0° C.

The height H in mm will be read off on the mercury barometer.
The readings of the barometer are reduced for purposes of comparison
to one and the same temperature, viz., 0° C.

The coefficient of expansion of mercury being 1 : 5550, the height
read off on the barometer

t . t V
H=H, (1 + 5—55—0) , so that practically H, = H(l — 5550),

and the correction amounts to
Ht

which is to be subtracted from IH.

On the other hand the scale on the barometer changes by expansion.
If the scale is made of brass (coefficient of expansion 0-000019), we
have to subtract again from the last number, 0-000019 Ht.

The whole correction then to be subtracted from the reading H
of the barometer is thus only 00000162 H¢ (compare Table no. 5).

Frequently the humidity of the air is not taken into account. In
this case
5o 0465 . H,

273 + ¢

and this is sufficient in most cases.

In this way the density of the air is obtained near the ground
level.

(H, in mm),

Air-density 8, at height .

When the alteration of air-density with the elevation ¥ m above
the place of observation is taken into account, it can be allowed for
by the formula

8, =8(1—000011y),
where 8, denotes the density at height y (the number 0-00011, ac-
cording to the calculations of Charbonnier, is more accurate than that
of 0-00008 of St Robert).

It will often be sufficient, after the corresponding problem of the
trajectory has been calculated with & equal to the air-density on the
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ground, and in this way the height y of the vertex has been deter-
mined, to perform the operation again with an air-density 8y, which
refers to the height Y at which the shell would be found in its flight
on the average.

This average height Y, in the case where it refers to a trajectory
which comes down again to the horizontal plane through the muzzle,
is given by ¥ =3 v,.

The density 8y of the air at the average height Y is thus

8y=8(1-000011.3%y,),

where 8 denotes the density at the ground, and y, the height of the
" vertex. :

The calculation is then repeated with this value of the air-
density.

In all such calculations it is nevertheless essential in the calculation of the
air-density & on the ground, that the air-temperature is to be taken not at the
moment of firing, but as a mean temperature based on a series of observations,
because the air-temperature alters in general more slowly at a great height than
near the ground. The quickly moving periodic oscillations in the temperature
of the lower air-strata do not travel much upwards, and so must be ignored.

It is preferable then to measure the temperature of the air on the ground at
6 in the morning, 2 in the afternoon, and 10 in the evening, and to take the mean
of these three readings.

To obtain the mean diurnal temperature of the air, more simply and almost
as exactly, a single measurement will serve, if taken either in the morning between
8 and 10 o’clock (in Winter a little before 10, in Summer a little after 8), or else
in the evening at 8.

In the reduction of ranges to a normal air-density, as will be explained in
§43 and § 45, it is a question of the percentage change with average height, or of
48,/8,. This relation is usually replaced by the equivalent at the ground level

As, Al
N
But this is only correct when the relation between the air-density 8, at height
¥ and the air-density on the ground is a definite function f(y) of the height y
(for example the linear function above), i.e., 8,=8.f(¥), and when moreover this
function f(y) does not alter when the air-density changes from 3, to 8, +48,.
It is only then that A8, =48. f(¥).
" The last relation includes the other, because the rapid variations of tempera-
ture, which can be observed near the ground and at a limited height, have been
eliminated, when 3 has been assumed as the mean of the last 24 hours.

When the air-density 8, at a height ¥ m is to be calculated more
accurately than in the approximate formulae of St Robert or
Charbonnier, the procedure is as follows:

The temperature ¢° C. is calculated by assuming (see note 15) the
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air-temperature to diminish on the average 0°57 for every 100 m of
height.

Thence, and from the barometer reading H, mm on the ground,
the barometer reading H, at that height (¢, the mean temperature
between the upper and the lower height) is given by

=

log Hy =log Hy— 175575 i 0:004 7,,)’
1294 . H, 273 0174.1E
and thus %="T760 33Tt 2B ec
in which expression in most cases the second term may be neglected;
and s is taken =} at that height; E is given in terms of ¢ in
Volume 1v, Table 4. Better still, the direct measurement of §, by
means of registering kites and pilot balloons might be carried out.

An empirical table obtained in this way is given in Vol. 111,
§ 111, from which 8, for any height is to be taken; thence the calcu-
lation is made according to the observed air-density on the ground.

Ezample on §15.

1. Reading of barometer on the ground 751'8 mm, air-temperature 15°,
hygrometric state 50 °/,.

Then H,="751-8—~18=750mm ; and according to Table 4, £=12-8 mm,
s=4%,¢=15"; on the ground §=1206 kg/m?.

2. Height of barometer on the ground Hy=750mm, mean temperature of
the air 16°. How great is the air-density 8, at a height y=2000m?
Temperature at this height is ¢ =36, so that

2000

log H,=1log 750~
18400 (1 +0:004

Hy=578;

156+ 3'6) ’
2
thence 8,=093kg/m3.
Charbonnier’s expression gives

8,=1-206 (1 —0-00011. 2000)=094;
St Robert’s gives
8,=1-206 (1 - 0-00008 . 2000)=1-01.

§ 16. Critical remarks concerning air-resistance.

We thus see that the experimental results are not entirely in
agreement with those obtained by a theoretical examination of the
.question, and it is consequently evident that the matter has hitherto
been insufficiently investigated in its theoretical aspect.

The attempts to arrive, through purely theoretical considerations,
at a law of the resistance of the air to an elongated shell, moving axially
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and rotating, have so far led to no satisfactory results, because the
phenomena cannot be properly examined.

The shell loses energy in its flight through the air by reason of
the fact that the particles of the surrounding air are accelerated.
These accelerations are associated with wave making, and eddy motion
in consequence of friction. These complicated results of the air motion
may be treated from one point of view as the results of impact, and
from another as thermodynamic effects: in either case with only partial
sucecess.

Other laws, such as those of Lorenz and Vieille, giving at least
the most important facts of the movement of the air round the shell in
a mathematical form, are such that it is not yet known whether they
are directly applicable to practical purposes.

It has been shown that the various quantities required in measure-
ment of the air-resistance, namely the cross-section R, the form-
coefficient 7, the velocity v, etc., do not occur in the simple manner
assumed formerly; that is, as separate factors of a product, in the true
function of air-resistance; and that, strictly speaking, a single form-
coefficient ¢ does not exist, as characteristic of the influence of the
shape of the shell.

In the case where the elongated shell does not move axially through
the air, but where the long axis makes a finite angle with the tangent
to the path of the centre of gravity, the components of the air-resist-
ance, parallel and perpendicular to the long axis, and also the point
of application of the resultant air-resistance on the axis may be calcu-
lated by help of some elementary law (Newton, Lossl, etc.), but these
calculations are very uncertain; because nothing is definitely known
as to what elementary law is to be adopted in calculations for the
high velocity of the shell; and above all whether any law can be applied
with sufficient accuracy to give any practical result.

The so-called August head-form cannot possibly be the final solution
of the Newtonian problem as to the most suitable shape of surface.

Not only is there a fundamental discrepancy in the mere mathe-
matical statement of the problem, but the assumptions are in contra-
diction with the actual facts of the air movement round the shell.

We shall in future speak of the retardation of the shell as being
= ¢f (v), where cis proportional to the cross-section Rr, the air-density
8, a form-coefficient ¢, and inversely proportional to the weight P of
the shell. But this hypothesis is only adopted because there is nothing
better to replace it. .
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CHAPTER III

Problems relating to the trajectory

§17. The general equations. The Principal Equation
and its integrability.

The parabolic, as well as the elliptic path of a shell, considered in
Chapter I for a vacuum, is altered in general by the air resistance so
that the range is shortened, the vertex height and final velocity are
diminished, and the angle of descent is increased.

On the other hand it is not fundamentally impossible that the air
resistance may not increase the range, as recorded by v. Minarelli from
the observation of such cases: this is possible with elongated shell in
cases where the front part of the axis of the shell lies always, or at
least for the greater part of the trajectory, above the tangent of the
path; and so the action of the air against the slanting shell is of the
same kind as that on a sailing ship with the sails set on the slant.

(The same thing may happen with a spherical shell, when the
shell has a rotation about a horizontal axis; compare § 51 and § 58.)

These cases rarely arise, and they are excluded here, on the as-
sumption that the axis of the elongated shell lies continuously in the
tangent of the.path (or that no rotation occurs in a spherical shell).

Moreover disturbing influences will be neglected, such as the rota-
tion. of the Earth, and the wind, and for the present the air density
will be assumed as of its constant mean value.

Strictly speaking the ballistic coefficient ¢, occurring in the
retardation ¢f(v) of a shell from air resistance, is a given function of
the height y of flight, because the air density 8 is involved in ¢, and
this, as in § 15, varies with the height y.

Further there might be special shells to be considered in which
the weight included in ¢ is a function of the time ¢ (smoke-producing
shells, or star shells come under this head), or others in which the
cross-section varies with the time.
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In such cases ¢f(v) would be a function of the velocity v, height ¥,

and time ¢, so that’
of (v) =¢ (v, % 1).

Leaving out of sight all these considerations for the present, ¢f (v)
will be considered merely as a function of v alone.

The problem then is to calculate the elements of the trajectory,
under these limiting assumptions.

The trajectory is sometimes very different from that in a vacuum,
as is shown in the following examples.

Examples. (&) French infantry bullet: #,=701m/sec; 2R=8mm; P=128g.
At p=4"59, the range =2400 m =28 °/, of that in a vacuum.

(b) French 22 ¢cm mortar shell M. 87 ; P=118kg. With ¢=45°, and v,=78,
146, 193, 228 m/s, the range is respectively 97, 92, 87, 83 °/, of that in a vacuum.

The System of Equations.

Denoting the retardation due to the air resistance by ¢f(v), and
employing ’
% 25, X, Y, Ys, O, b, 0, 0, 0, Ve, U, 8, T, 85, 8
with the same meaning as in Chapter I, the problem is formulated

by the two equations
d(veos)=—cf (®)cosOdt, oouvrnvvviiiiiniiininns 1)
d(vsin@)=—c¢f(v)sinfdt—gdt, ............... (2)

because the forees which act on the shell, of mass m=§, are the

weight mg, in the direction of the — y axis, and the resistance of the
air mc¢f(v) in the direction of the tangent.

These two equations (1) and (2) can be transformed into the five
following equations, (3) to (7)

gd(weos ) =wef () dl «.ooviiiiiiiiiiin 3)
dv _ db ref(v) , . _dg (cf()
or 2 "o d ( 7 + sin 6) “i—g ( 7 +q) ...... (3a)
where ¢ =sin §; or
du
qE= ThEFF () cevnrneeiininianennnnen. (3b)
where u=log v, and sin # =th {; also F () is equal to @ ; or
dr 1—72
n=" Ty — o (3¢)

Digitized by Microsoft ®
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Wheré v =gY, cf% =F(w), sinf=-—r
gadz=—d8, ......coooiiiiiiiiiiii (4)
' vdf
dt=—m, ............ YRR RE ) seeavean ..(5)
gdy=—v2tan 0dl,........................ (6)
v2df
gdS = — —(-EI)—S—_G g seessessescesasannssersares (7)
where ds is the element of arc. Also
dz d
= 7’; =gy e (8)

in which % or tan @ is replaced by p.

Proof of the equations (3) to (8).
The component acceleration in the direction of the normal on the one hand

is g cos 8 at the point P of the trajectory considered, and on the other hand is
2
%, where p is the radius of curvature at point P (z, 7).

Now p=:§—z; therefore (7) becomes
gcos f= =122 j—f
(the minus sign is required, because as s increases the angle 8 is diminishing, and .
dé is negative),
The elimination of cos 8 between (7) and (1) gives

_ of (v)vidadt )

d (v cos 8)= +—g(§—,
or, since Z—Z—=v, the equation (3) follows, which can be written in the form (3a). .
The horizontal component of the velocity d—w=vcose; substituting in this

ot

equation the value of cosd from (7), we have equation (4), and then (6), since

dy=tan 8dzx and ds=wdt. :

Equation (5) is merely another form of (7), since ds=vd.
Finally, to obtain (8),

%8 df
we have from (5) & sostddr=95
. dé dz dé
27— — —_—=
and since =9 3 and ey d tan 4,
dzd tan 6 :
therefore ——ag -4 o

The proof of these equations can be given without the aid of the expression
. - 2
for the centripetal acceleration 2‘0—; because in equations (1) and (2), when the
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left-hand side is expanded, and the retardation ¢f(v) of the air resistance is
eliminated by multiplying the equations respectively by sin 4 and cosd, and
subtracting, then equation (5) follows immediately; and also (7).

Among these equations (1) to (8), the one which involves only
two elements of the trajectory is (3a) or (3b).

We have next to integrate the differential equation (3), and to
determine the constant of integration so as to make 6 = ¢, v=1,.

If v has been obtained as a function of 8, so that v= F (@), then

dz = — 3 (F(O)y db, dy=— ; (F(6))* tan 6.6,
dt=_§F(8) sec 8 d6, ;ls=—§(F(0))’se00d6;

and we have only to integrate with respect to 6, or sum up dz, dy, dt, ds.
As for the different methods which can be used to carry out this
plan, they are considered in Chapters IV and V.

Integrability of the Chief Equation.

It is only on a definite assumption of the form of the function
¢f (v), the retardation due to air resistance, that a first integral can
exist in a finite form of this equation,

gd (v cos @) =vef () d6,
or, of the equation

v cos@

dv_ db (qf'(v) +sin B) .
g

The integration was worked out in 1719 by John Bernoulli, on the
assumption ¢f (v) =cv™ Thence it is possible, as we have already seen
for the quadratic law ¢f (v) = cv?, as well as for the cubic law cv3, the
biquadratic law cv4, and so on, to solve the problem.

And when as in § 10, the empirical value of air resistance is given
by tables in a series of zones, the trajectory in this more general case
can be calculated with accuracy, by dividing it up into a number of
successive parts. This is discussed in the later articles, §§20 to 22,
32 to 34, and § 37.

Afterwards, in 1744, d’Alembert showed how the integration is
possible for the more general law ¢f (v) =cv® + b, which includes the
Bernoulli law as a special case.

He examined also the functions «logw+ b, av" + R+ bv~",
a(logv)*+ Rlogv+b. But these three additional forms are not of
any real importance for our present purpose.
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In 1901, Siacci resumed the work of investigating other forms

of an integrable function, and published fourteen other forms, such
as

Av+/(2c+v*) + B(c + v?), where 4, B, ¢ are constants.
Putting +/(2¢ + v?) = vz (Bc — sin ), equation (8) becomes

zdz 4 dé -0
22 (B%*—1)+24cz+1 ' cosd(Bc—sinf)

in which the variables are separated.

The form employed by Legendre, in 1782, is included in this, with
A =0. Other functions of this kind have been examined by P. Appell,
M. E. Ouivet, and T. Hayashi (Tokyo).

It need hardly be stated that there is an infinite number of such
integrable functions; for it is only necessary to assume any relation
between cos @ and v, say, cos @ =+ (v), and to insert this, with
dé = % , into the equation (3), and then solve it for ¢f(v);
and such a function is then obtained.

Again, as in §18, other integrable functions are obtained on the
assumption of y = yr (z) for the equation of the trajectory.

The equation, (3) or (3a), is the dynamical expression of the
hodograph curve of the trajectory.

Consider the line drawn through the origin O of coordinates parallel
to the tangent at any point P of the path; on this parallel through
O let the magnitude v of the corresponding velocity of the moving
point be measured to scale so as to form a radius vector from O.
‘When this construction is carried out for all points of the path, the
ends of these vectors trace out a curve, which is called the hodograph
of the corresponding path, and the variables v and 4 are the polar co-
ordinates of the hodograph.

The hodograph in general is a curved line; but in the special case
of a vacuum it is the perpendicular to the axis of 2 at a distance v, cos ¢
from O: for in this case ¢f (v) = 0, so that the equation (3) becomes

‘d(veosf) =0, wvcosd=constant =1y, cos¢.

Recently C. Cranz and R. Rothe have shown that the equation (3) in the
problem can be integrated graphically with satisfactory accuracy, in the case of
an entirely arbitrary law of air resistance, without employing zonal laws.

The equation
dv_ do {sin é +c_i_(v)}
» cosé g
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is first simplificd by the introduction of two new variables u and ¢ (instead
of the former variables » and ). We take w=logy, so that du=‘%, and

. dé
sin § =th ¢, and then d{—aos—o .
Writing F (u) for %(—I—’) , the equation becomes g%‘=th {+ F(u). Here the

value of cf% or /'(u) is given for », and so for %, in the table of air resistance;

and th¢ is given in terms of { in a convenient form in a table of hyperbolic
functions (those for instance of W, Ligowski, Berlin 1890, published by Ernst
and Korn, or in the Table of Functions of E. Jahnke and F. Emde, Leipzig 1909,
published by Teubner).

Runge’s graphical method of integration may be employed for the solution of
a differential equation of the first order; and he has shown that his method con-
verges, that is, the solution always becomes more accurate with a repetition of
the process.

In a system of #, { coordinates, a number of isoclinals th ¢+ £ (%)= C are firat
drawn, and then starting from the origin (uy, {;) a polygon is constructed, of which
the successive sides cut the isoclinals at the angles given by the corresponding
value of C. A first approximation is thus obtained of u=¢ ({). Substitute this
value of u in the differential equation, and we obtain

du={th ¢+ F[$ (¢))} dt:

As the variable ¢ above is contained in the right-hand side, we can inte-
grate with respeet to ¢, from ¢, to {; and so0 a closer solution is obtained.

Moreover, Runge shows how to follow graphically the substitution and in-
tegration, as well as the other details.

We can imagine then the construction of a special integraph contrived for
the integration of the equation, so as to carry out mechanically the remaining
integrations.

An apparatus is described by E. Pascal in his book on Integrators which is
specially devised to carry out the integration of the equation.

Filloux has proposed to use Prytz’s planimeter for the same purpose.

§18. An Inversion Problem.

If the actual path of the shell is known (either by the equation
¥ =1+ () between the coordinates # and y of any point on it, or
* graphically in any other manner) then for any such point (z, %) of the
trajectory the corresponding velocity of the c.G. of the shell, the in-
* clination € to the horizon of the tangent of the path, the time of flight

t, and the air resistance W = mcf (v) are obtained in the following
manner.

Digitized by Microsoft ®

o me——==

W
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We find the ﬁrst three derivatives of y with respect to «; denote
them by ¥/, ", ¥’ ; then

v=\/(9_1_i;5:)»

ol 9 o
of0)=—g G, d-da, 2L

so that the time ¢ is given by an integration of this last equation.

For if we differentiate tan G—g:z— =y with respect to 8, then

1 _dyds_ ,dx

cost d dxd& =Y 38’

dz 22
=" g’ c0320 3/, 'ucosﬂ—\/ g

And further,
1

NETON

2
so that v= N/<g1+7/

and along the trajectory y” is negative, so that \/(—#") is real.
The relation for ¢ follows from

dx "
'vcose—m dt= vcosd \/—-

Finally, in the equation (3)

cos 8=

-z,
and here, since veosf= \/ _—‘Z/, ,
d d (veos 8) dx 22 N3 2"
R [T T <
' " / 1 2
so that of (=3 J?zygz/’s) _9 Q;Jy )
Ezamples.

1. The trajectory in many cases maybe replaced conveniently by an hyperbola
with a vertical asymptote ; this has been stated by Newton, Indra, Okinghaus, and
Stauber.

E. Okinghaus formerly stated that the trajectory was actually such an
hyperbola ; later he assumed the two asymptotes to be slanting, and discussed
the hyperbolic solution of the problem as merely an approximate solution ; see
§ 19, theorem 6.

On the assumption that the trajectory should be an hyperbola

ax — a3
“T-z

b
2 tan ¢,
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3qa (b—z)?

then SO0t e s tan

ga (b—-ap
('U cos 0)2=m,

ta.n€=tau¢.%{ "(,Eb x‘;)}

=2 {m=n - ufn/ (G 0~ tan g}

2, Piton-Bressant assumes the trajectory to be a parabola of the 3rd order,

7t
y=xtan ¢—m%§z—‘—b(l+mx),

where m is an empirical constant to be determined (compare also § 25).
Then in this case, since

the law for the retardation due to air resistance will be as follows :
3mvtcosdd

cf(”)=‘m’

also tan f=tan ¢p— % (1+3mzx),

Dok COS2 &b 052
v €08 §=v, cos ¢ (14 3mx)” 5,

_2{(1+ 3mx)‘3’— 1}
T 9mycos¢p

3. The following proposition was made by C. F. Close (see above, § 11).
Assuming the principle of the tilting of the trajectory as satisfactory, and that
a range table has been constructed, the trajectory of the gun may be constructed
for the extreme range by a tilting of the lesser trajectories. The points on the
trajectory are then given in polar coordinates.

The relation between radius vector and polar angle is given by an equation,
and thence on the above principle the values of », v cos 6, ¢, ¢f () for any point
of the longest trajectory are found.

It is possible then with the aid of the range table to obtain the air resistance;
and corresponding calculations have been made by G. Greenhill and C. E. Wolff.
Consult § 11 and §§ 38 to 40 on the probability of these assumptions.

§ 19. General properties of every trajectory.

1 A knowledge of the differential equations established in §17 is
sufficient to deduce a series of general values, independently of any
assumption of a special law of air resistance, for any trajectory.

It is assumed, however, that the resultant air resistance acts along
the tangent of the trajectory, and the retardation ¢f(v), due to air
resistance, is a continuous function of the velocity alone.
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Those general properties of the trajectory are now to be discussed,
which differ between the paths in air and in a vacuum.

1. The horizontal component » cos 6 of the velocity » in the flight

of the shell diminishes along the trajectory.

Proof. In the equation

gd (v cos 8)=cf (v) vdé,

where ¢f (v) is positive, df is alwa;ys negative; because the angle of slope &
with the horizontal decreases from its original value ¢ ; thus the right-hand side
of the equation is negative, and so d (v cos #) is negative ; that is, » cos § diminishes
always.

Numerical example. A shell from a field gun, vy=442 m/sec, ¢ =15}% degrees,
calibre 88 cm, weight of shell P=7-5 kg.

For the horizontal distances

=0, 3000, 5000 m, »cos =425, 223, 168 m/sec.
2. The angle of descent w is greater than the angle of departure ¢.

In general, at two points 4 and A4, with equal ordinates y (4 on
the ascending branch, 4, on the descending) the angle of slope ¢, at 4,
is greater than 6 at A.

Proof. The equation

tan 4d4 gdy
gdy= - v*tan §d6, or — cos?d ' (vcos @)

is to be integrated, first from the origin O up to the vertex S, or from d=¢ to
#=0, or also, from y=0 to y=y,; on the other hand, back from the point of

descent 0, to the vertex §; so that

vs gdy

on the one side, +3tan?¢p= o (7 603 7

. Ys gdy
o _ (¥ _gdy
on the oi?her side, +3}tan?w= o weos B’

Since v cos 4 is always diminishing, the denominator in the second integral is
always less than that in the first integral ; or the fraction under the integral sign
in the second integral is always greater than that in the first ; the second integral
is thus greater than the first; so that

tano > tan ¢, © > .

The same holds when the integration is taken from 4 or 4,.

Numerical example, as in No, 1.

‘We have 0=24° 53, ¢=151% degrees.
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3. The vertex height y, of the trajectory always lies between
} X tan ¢ and } X tan o, where X is the range.

Captain Anér, of the Swedish infantry, has worked out a rigorous proof of
this law, In the parabolic flight in 2 vacuum

v, 8in? v2 .
Y “—29—? s X=—;— sin 2¢,
so0 that Y=} Xtaneo.

Next, 00,=., and consider first the parabolic path 0B0,, with angle ¢ of
departure and descent, for which the vertex height 4 B=}.tan ¢; next, the
parabolic path 0CO,, with departure and descent angle o, for which the vertex
height AC=3} X tan w; thirdly, the actnal trajectory 050,, with angle of departure
¢, and of descent o, for which the vertex height is DS.

c

Then the last, DS, is in every case smaller than AC and greater than 4B,
because the actual trajectory 080, must lie between the two parabolic paths 0B,
and 0CO,; thus DS lies between .Y tan ¢ and }.V tan .

Numerical example, as in No. 1; X=4501 m, vertex height lies between
320m and 520 m. The most probable value is then the mean, 420 m.

A calculation by Siacci (§ 28) gave 416 m, and Table 12 of Volume 1v gave
425 m.

Either the arithmetic or geometric mean may be taken in the ecalculation of
the vertex height, or

Yo=3 X (tan ¢p+tan w), or y,=t)_(,‘/(tan ¢Ptan o).

4. If 4 and A, are two points on the trajectory at the same
height y above the horizontal through the muzzle, the velocity v at
the point 4 in the ascending branch of the trajectory is greater than
the velocity 9, at the point 4, of the descending branch.

i Proof. The equation of motion of the shell resolved along the tangent, is

2 o —ef()-gsing,

or if s denotes the arc of the trajectory to the point considered
$d (19 = ~¢f (v) ds~ g sin 8de= — ¢f (v) ds - gdy.
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If this equation is integrated from 4 to 4,; then f dy=0, and there remains

b= 9= e [ F(5)ds;

the right-hand side is negative, and so n<v.

This equation can be obtained at once by means of the fact that the alteration
4m (v,2-v%) of the kinetic energy of the shell, in passing from 4 to 4,, is the
sum of the work of air resistance and gravity; and as the last part is zero when
4 and 4, stand at the same height,

im (02 —v%)=— fmcf(v) ds.
Numerical example, as in No, 1: y=0, vy=442 m/sec, v,=197 m/sec.

5. The vertex point § of the trajectory is nearer, measured
horizontally, to the point of fall O, than to the point of departure O.

Proof. Let the equation dr= n;i—xﬂ be integrated, first from the origin O up to
the vertex S, or from y=0 to y=y,, and let 4 denote the angle of slope of the
tangent to the horizontal. Secondly let the equation be integrated from the point
of fall O; back to the vertex, with 8, the angle of slope. Then

_[vs dy _ [ dy
%= o tang’ TnT ]/, tan 8, "

; dy . dy .
But here, according to 2, for the same z, 8, > 6, so that fand, <t d’ thence
&y, < Xp.
Numerical example, as in No. 1. A calculation according to Siacci gave

#y=0D=2500 m, x,=0,D=2001m.
6. The descending branch of the trajectory has a vertical

¢
asymptote, at a distance é— f v? df from the origin; the velocity in

-4
the path increases there and approaches a limiting value v,, to be
calculated from the equation ¢f'(v,) =g.

v db veosd dé
P?OO]C. ‘We have dt= —g m=— 7 m.

grated from ¢=0 to £=¢, it is allowable to replace v cos 8 by a mean value p, since

When this equation is inte-

. . . 1 .
vcos 4 is always finite and continuous, and o0 does not alter in sign.

5% d
According to this

N L Y
‘ = g[,pcos‘la— g(tane tan ¢).

The prolongation of the path of the shell past the horizontal through the
muzzle, will converge to a vertical direction because when ¢=ow, the left-hand

side of the equation becomes infinite, and consequently the right-hand side also:
mw

since p and tan ¢ are finite, tan d must = ~ =, and = -~ 3
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§19] Problems relating to the trajectory 99

It is evident that this vertical, to which the descending branch approaches,
is a line at a finite distance, because of the relation

o2 1 fe
dr=—2 do, .z'=--—j 22do.
g gls

Here #2 is always finite, because, starting from the initial value vy, the
velocity diminishes at first, provided ¢ is different from zero and is positive, in
consequence of the effect of gravity and air resistance.

After v has reached a minimum, it increases again under the effect of gravity,
till finally the air'resistance becomes equal to the weight of the shell. Then
when this limiting value «, is reached, which is theoretically only after an
infinite time, the forces mef(v) and mg balance one another, and the shell moves
on with the constant velocity ;.

(]
Thus the integral f . v2df is always finite, whatever value 6 may assume

between ¢ and —4#; and the limiting value of  is thus
4w
06=-1 f Rdh=+1 f‘” sde.
g9Jé g J -k~

Numerical example. A shell was fired at Meppen on April 28, 1892, vwith the
. following initial conditions: calibre 24 cm, weight of shell 215 kg, radius of
ogival head 2 calibres, initial velocity 640 m/sec, angle of departure 44°, air
density taken at 1:22 kg/m3.

Calculation gave therefore the following results: horizontal range 19,066 m,
time of flight 68-8 seconds, final velocity 3804 m/sec, angle of descent 58° 21”5,
vertex abscissa 10,840 m, vertex ordinate 6,150 m. Moreover the limiting value
2; to which the velocity was tending continually, was about 580 m/sec, and the
distance of the vertical asymptote from the point of departure=29,300m.

7. The minimum value v, is given by the equation

of (V) =—gsin 6.
The point of the trajectory, where this value is reached, lies beyond
. the vertex, in the descending branch.

Proof. To obtain the slope of the tangent of the path where » is a minimum,
the derivative of  with respect to 8 must be made zero; but as, in general,
do _ v (ef(w), .
Jé—cose{ g +sm9},
the first part of the theorem follows immediately.
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100 Problems relating to the trajectory (cH. 11

Further, the velocity » in the path at any point can be resolved into a hori-
zontal component v cos 6, and a vertical component ¥ sin 4.

From the starting-point up to the vertex, both these components diminish,
as also their resultant ».

At the vertex, the horizontal component is still decreasing; the vertical com-
ponent on the other hand has reached its minimum; or, in other words, is
constant for a moment; consequently the rate of change of the resultant » depends
on v cos d, and as this is diminishing, » is decreasing at the vertex.

But since » in any case increases again later, it follows that the minimum
must lie on this side of the vertex.

The exact place is to be determined by means of the relation between » and
6, and by the equation

¢f (v)+gsin 6=0.
Ezample, as in No. 6. By calculation it was found that if §= —~15°, » became

a minimum, at about 251 m/sec. The coordinates of the corresponding point
were = 12,570 m, y=5880 m,

8. Curvature of the trajectory. The point X of maximum cur-
vature is given by means of the relation ¢f (v)=-—3gsin 8; it les
always on the descending branch, and between the vertex S, and the
point M of least velocity.

Proof. The acceleration of the shell in the direction of the normal to the curve

2
is on the one hand g cos 4, and on the other %, where p is the radius of curvature;

and so
o2
lel= goosd’
and this expression will reach a minimum, or the curvature a maximum when
dp : . -
3@—0 But
2v dv cos §+v%gin 8
dp "' .
dé gcos?é ’

and (§ 17, equation 3a)

dv vef (v)
d—g—vta,n e+gcosa

Therefore the condition for an extreme value is given by

0=2vcosf {v tan 6+M}+v25in 8,
gcosé

or 3¢ sin 84 2¢f (v)=0, as above; and from this condition the peint K of maximum
curvature of the path can be obtained. :
As to the position of this point and the nature of the extreme value,

. .

. G
the change in p_gcos 2

must be considered, first from the origin O to the
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§19] Problems relating to the trajectory 101

vertex S, and then secondly from the point Jf of minimum velocity and
beyond. .

The velocity » diminishes up to the vértex .S; 8 diminishes at the same time
or cos 4 increases, and 6%5 diminishes; on both grounds the radius of curvature
p diminishes from O to S, that is the trajectory becomes more and more curved
from the origin to the vertex.

On the other band, at the point f of smallest velocity v, the numerator »
2

. - e .
in the expression oosd constant for a moment, # has become negative, and
cos @ is diminishing, i.e., coop 18 Increasing. Thus the alteration of p in the

neighbourhood of the point 3/ depends on the alteration of —1—; that is, p is
cos 8

also diminishing there. But the curvature is continuous, so that a minimum
value of p must lie between .S and A/,

2
It may be remarked further that the expression p= 7
gecosé

independent of any special law of air resistance, since f(v) is not involved in it;
and so it follows that all trajectories with the same » and ¢ have three con-
secutive points in eommon with the parabolic path in a vacuum.

It follows also in consequence that the actual trajectory may often be replaced
with advantage for a short are by the corresponding parabolic path in a vacuum;
for instance in the neighbourhood of the origin O (see figure on p. 97) by the
parabola OBO, with the same v, and ¢, or near the point O, by the parabola
0C0, with the same v, and o.

This is convenient in the ballistics of small arms, in the measurement of the
error of the angle of departure, for the determination of the drop y of the bullet,
or in the determination of the range.

Numerical example, asin No. 6. Calculation gave the coordinates of the point
XU of greatest curvature as x=12,000 m, y=6000 m, and thence §= —10°.

is completely

9. The vertical component of the velocity increases throughout
the whole descending branch. At two points 4 and 4, with equal
ordinate y (figure, page 96) the vertical component is greater in
the ascending branch at 4 than at 4, in the descending branch.

Proof. Substitute in equation (2) on p, 89, that is, in

d (vsin 8)= —{g+cf(v)sin 8} dt,
2y

the value of d¢ from ?‘E=vsin 4; then

3d (vsin 0)2= — {g+cf (v)sin 6} dy.

This equation is to be integrated first in the ascending branch from 4 to S,
from vsind to ,s8in0, on the left-hand side, and on the right from y to y,;.
secondly on the descending branch from the vertex S down to 4,, that is on the
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102 Problems relating to the trajectory [on. m1

left from v, 8in O to vsin 4, on the right from g, to y; we have then
(¢) 0—4%(vsind)i=-~ f:a{g+qf('v) sin 8} dy,
® H(osinop-0=~[! (g+ef(o)sin6)dy
Ys

=+f”’{g+cf(v)sin 8} dy.
Yy

In this last equation (b), as in (a), we take 4 as the acute angle between the
horizontal and the tangent of the path; then in (b), sin 4 is negative, and so

(¢) 3}(vsind)= +fy' {g+¢f (v)sin 6} dy, ascending branch;
¥

(d) 3(vsind)i=+ f ve {g - ¢f (v) sin 6} dy, descending branch.
v

In the integrals on the right-hand side, the values of () are less than those
of (a), and so the integral in (b) is less than that in (@), and thus »sin g in (b) is
less than #sin 6 in ().

10. For a range on the horizontal through the muzzle, the time
of flight in the descending branch is greater than the time in the
ascending branch,

Proof. Let the time of flight in the ascending branch from O to § (figure on
P- 96) be denoted by ¢, and the time of flight in the descending branch from §
to0 0, by ¢,

From equation (5) of the system in §17,

vdf
T Tgecosd’

This equation is to be integrated from O to S, i.e., on the left from =0 to
t=t;, and on the right from 8=¢ to §=0; and next from O, to S, i.e., on the
left from £=0 to ¢=t;, and on the right, where 6 must denote again the acute
angle, from =0 to §=0.

6=0 o=¢
This gives (@) t=- f vd6 f vd6

a=¢goos€= s=0 gcosd’
0=0 o»df o=w ydf
® t2=_/a=..,gcos€=+/g=ogcos0'

Both integrals are finite, since » and cos @ are finite, and therefore ¢, and &,
are also finite,

‘We can also employ the equation
dy
dt:v sin 8’
and integrate it, in spite of the zero value in the denominator at the vertex; first
in the ascending branch from O to S, that is, from y=0 to y=y,, and secondly in

the descending branch, backwards from 0, to S, that is, from y=0 to y =g, (with
0 again the acute angle).
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§19] Problems relating to the trajectory 103

Then (@) t= f v _dy

o 78I’ ascending branch,
yﬂ

Y=y dy .
®) 6= f ymo 75116’ descending branch.

Here, as was shown before in Law 9, #sind in (b) for the same y is less than

vsin 4 in (a), so tha.t 1 m (b) is greater than ll 7] in (a); and so it follows

that the integral in (b) is grea.ter than the mtcgm] in (@) (term by term), or ¢, > ¢,.
11. The arc s, of the ascending branch from the origin O to the

vertex S is longer than the descending arc s,, from the vertex S to
the point of fall 0, on the horizontal through the muzzle.

Proof. Take the result ds=—fi—'y— and first integrate it from O to S, and so
sin 8’

from 8=0 to 8=4; on the left; and on the right from y=0 to y=y,; secondly
from the point of fall O; backwards to S, where 6 again denotes the upward acute
angle. We have thus

vs dy . .
(@) 8= / o 5nd’ ascending branch ;

) 8= Z’ s;i—yo’ descending branch.

According to Law 2, for the same y the angle 4 in (b) is always greater than

. 1 . . 1 .
in (@), so that e AL (b) is always less than s (@), and s0 8, < #;.

Consult the remarks in the notes in the appendix concerning the
question of the angle of departure ¢, with given initial velocity w,,
which corresponds to the greatest range in air.
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CHAPTER 1V

First group of calculations in the approximate
solution of the ballistic problem. Approximate
solution of the exact differential equations

§ 20. It was shown in § 17 that the procedure in a numerical
solution must be such that the equation,

9d (v cos 8) =c¢f (v)vdd,
must first be integrated, where ¢f(v) is the retardation due to the air
resistance; and then its integral equation, in the form v = F(f), must
be employed to carry out the integration or summation in

x=_[’fd9, y=_f’ftanedo, t=-f9secede.
g g g

Strictly speaking, the problem cannot be solved analytically in a
finite form except for a law of air resistance ¢f (v) = cv.

In other cases, as we shall see, only approximations are possible.

As a first group of approximate solutions, let those be examined
for which the equation itself has been solved exactly; and let
approximations be used for the summation of de, dy, dt. This first
group is the one with which this chapter is concerned.

Later a second group will be taken in which an approximate
method is employed, for the equation itself, in that the equation is
replaced by another approximation, for which all further integrations
are made possible.

1. Solution of the equation on the assumption of a
retardation = a + cv™

The equation now becomes
gd (v cos 8) = v (a + cv™) d6.
When the left-hand side of this equation is expanded, and the
equation is divided by v+, and av—"df brought to the left-hand

side,
gcos 8.0~ 'dy — (a+ gsin ) v="df =cdb. ...... 1)
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§ 20] Approximate solution of the ballistic problem 105

Put v~™=u; then — nv~"~'dv=du, so that we have an equation
in Euler’s form

d .

TR ©O=Q0),
. _,atgsinf n ___nc .
where R_+_cos€ T Q= Geosd"

The integral of this differential equ.ation of the first order is
u = e~[24[ [(Qe+/Rd®) d + the constant of integration].

Consequently, in the preceding case, the required relation between
v and @ is the following:

n | adf +g/6a£lo
1 _ T o)eme | _nfee 90
(veos o)y g) (cos@yrt1 7
+ the constant of integrationJ. ...(2)

2. In the special case a = 0, the law becomes ¢f (v) = cv® for the
retardation of the air resistance.

Then for any value of the angle 6, the velocity v of the shell is
obtained from

1 ne [ dé

(veos Oy 7 | (cos G+ +a constant. ......... 3)

This constant can be obtained, in the foregoing special case of
¢f (v) = cv®, from
gd (v cos 8) = ¢f (v) vd#.
Thus

do

_ M = n+l__
gd (vecos 8) = cv™. vdf = ¢ (v cos f)* ! {cos g+’

d(vcos8) a0

i :
i (vcos G)"F1~ g (cos B)n+1’
J

and integrating

1 ‘ne do

(voos Oy 9 ) GGos gy + a constant

For the calculation of this integral,
dé

(cos G)n+1’
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106 Approximate solution [cH. TV

we know that

f de sin @ L 2 dz
(cosz)* (n—1)(cosz)*~1 " n—1 f(cos zyr—?’

Thus, for example,

dz sin
(oo 2y = 3 (eos o + % log tan (437 + 32) cuveneennne 4)
. 1+sine
=lsinz (1 +tan®z)+1log —~osz

=3pv(1+p%) +log (V(1 +p*) + pl,
where p = tan z.

This function, which may be denoted for short by £, is given in Vol. 1v,
Table 105, for values of

E(x)=é(sinx 1 1+sinx) 1 sinz

costz 8 Teosz )2 coszx+§10g tan (45°+4 ),
for angles # from 0° to 87°.

A more extended Table is found in Otto’s Tables for bomb throwing, Berlin 1842.

d
f(chw)‘ =tanz+4(tan 2P ..oooiiiiiiiiiiii (5)

dz sin & 3sinz
f (cosz)~ dcostw * Soosiy T8 l0g tan (G + 32)......(6)

[(chsw‘?)ﬂ =tanz+ % tan®« + Jtan®z, ete. .............l. (7

With n =2, for example,
1 c/sin 8 1+sinéd
- (2= — tant ;
(veos 8y g (cos2 97 "% Tcos @ ) + constant;
or, writing tan 6 =p,

: ;I)-gp2= _5 {P V(1 + p?) + log [v(1 + p*) +p]} + const.

When this expression for v, or rather for v* is substituted in the
general equations

gdz = — vd8, gdy=—1v*tan 6d0,
gdt = —vsecfdf, gds=—v*sectdf,

then da, dy, dt, ds are expressed entirely in 6, or in p, with tan 8 =p,
or in z with tan (37 +46) = z; so that it only remains to work out
these integrations, that is, the problem is reduced to quadratures.
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§ 20] of the ballistic problem 107

3. In the special case of =0 and n =1, i.c,, on the assumption
¢f (v) = cv, the expressions for all the elements of the path can be
obtained in a finite form, as stated already.

As functions of ¢, we have then

1-— e—-ct

& =v,c08 ¢ penn SRTHEUTRIT TR RN (8)
y= —%t +3@ (=€), vrvenrrennnn. (9)
VCoSHA =17,C08Pe %, coiiiiiiiiiiniiiiiieirrrrnas 10)
'vsin0=—'g+gw S an

But this law of air resistance, ¢f (v) = cv, does not generally come
into consideration.

4. In the special case of ¢=0 and n=2, and the assumption
¢f (v) = c1?, the quadratic law of air resistance is obtained. As above
1 -
(veos )
The integration constant is determined from the condition that
v =1, and §=¢ at the origin; and so

- %’ £(6) + a constant of integration,

o 9 1
= % m, .................. (12)
where C—-E(d) =2c('v+osw¢72’ .................. (13)
and E@=4{252 +logtan(as'+ 1)}

This constant is connected with the velocity v, of the shell at the
vertex of the path by a simple relation. Since 6 =0 at the vertex,
and there £(8)= 0, and v =v,, therefore

C= 27917 ........................... (14)

Introducing this value of +* or » in the system of equations
gdz=—v*df, gdy=—+*tanddf,
vdf d v*df

gdt:_cosﬁ’ g == s 8’
do
th =
en 2cdx ST O(C—E (@) (15)
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108 Approximate solution’ [cH. 1v

: ' | tanédf .
© : ZCdy =— Cm’ .................. (16[)
N (2gc) dt = — 00520\/10—5(0)} e e @amn
- 2ds =— a9 e (18)

cos* 0 {C—E ()]}
This last equation (18) can be expressed in a finite form by
another integration.

d 1 ’ .
Since, as'above, € _ we can write

*d6 (cos Gy’

—_ & __ dC=§
chs—-—c,__f U=

and thence by integration .
2¢s=log {C' — E(A)} +a constant. ............ 19)

| (a) If the arc s of the trajectory is measured from the origin O,
and s =0 when 6 = ¢,
_1,.0-£@ -
%2t 9= 5Greamg’

(b) If on the other hand, as below, the arc s is measured from
the vertex, and s =0 for #=0, £(6) =0, then

=2 log Q%@, E@)=C(L—e)......... (20)

The trajectory possesses two asymptotes,
The prolongation of the descending branch approaches a vertical line more
and more, at a distance from the origin, according to § 19, 6,

L / * td
9J ~i
{" At the vertex the variable of integration 4 changes sign ; £(6) becomes zero
.and then negative ; so that this distance is

"08

1 fé=0 dé + o=ir de
%¢ | p=pcos?0{E(B) -0} " 2¢ fo=0 00820{5(6)+C )

The prolongation backward of the ascending branch (to t=-w, 2= -,
y=— ) approximates to a slanting line, inclined to the horizon at an angle 8
given by C—£(8)=0; and the expression for itsdistance from the origin is easily
determined.

This distance is given here, without proof, as

1 - (0=B (tan 3 —tan8)d6
2ccos B [ g=¢ cos? 8 {€ (B)—£ ()}’

where 8 is supposed to be calculated from the relation £ (8)=C.
A similar result holds in general for the law of air resistance ¢f (v)=cv™,
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20] of the ballistic problem

Statement of Results.

1. Retardation due to alr resistance = cv® + a:

2v?dz
gdo=—wdf==1""",
2
gdt:_l)becode 'UZZ
v’dz

gcls——v’sec0(10=——z—

and here v is expressed in terms of 6 or z through

(vcost)” (cos gy»H
or, , ’
1 -n (ﬁ - 1) "—a —n-1
e e ALIAUIES | USRI

n 26 +n[ad0
a fal Badoedl
1 __/_ y J cosé@
- =€ g c°59{—7lj-ce——-—d0+c0nstant ’

109

in which z denotes tan (37 + 46), and the constant of integration C

is to be caleulated from the initial conditions

v=uy,for 8 =¢, or z,=tan((m + i)

2. Retardation due to air resistance of the form ¢f (v) = co™:

gdz=—12d#, gdy=—1*tan 8 d6,
gdt=—vsecfdf, gds=—v*secfdb;
and then

1 ncJ a9 + constant.

(v cos O)* - ‘g J (cos G+

When the constant of integration is determined from the condition

v=uy, for 0 =¢, then
e 1 1 ne
! (veos Oy~ (mcosdy* g {F(0)—-F(¢)}

sec 8
or Y= 1

-
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110 Approximate solution [on. 1V

where we write for brevity

¢ 1
F(6)= f (cos 6)"“’ F($)= J (cos 6)’“’1 »and C'= (v cos ) + F(¢)'
1 sec2@df
and then A = — = s,
9 2
[C’ -= F(G)_l
1 sec?d tan @d¢
dy=—— )
! c-"Fe@ ;
—_—— n
[o- 7o)
dt=—1 sec? 8d0 _,
! [0— ne F(G)};‘
g9
ds = — _1_ sec® 8 df

[0 X F(())] lo_mpayt

(a) n=2, ¢f(v) = ct? (quadratic law):
_9 1
“ 2ccos? 0 [C-E(6)]
with the notation
sin @

1
E0)= 5 I:cosﬁ 5+ log tan (45° + %0)]
_1fsm ¢ o
TORE [cosﬂ b +log tan (45° +19)|
(for which consult Table 10, Vol. 1v), and for brevity we put

= A =9
"~ 2¢ (wyco8 4>)2+ £(@), or C= 2cv,’

and then we have

dé
2 dw=—m,
% du = — tan 8d0
00y =T o O[O — E(O)’
dé
cost@y/[C—E(0)]’
2¢cds = — ——ﬂ—— -
cos’@[C—E£(0)])’
1, C—-§@)
2% 0= (p)’

V2gcdt=—
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§ 20] of the ballistic problem 111

when s is measured from the origin;

1. 0-£0)
and 8 %log 61 ’

when s is measured from the vertex.

(b) n=3; retardation ¢f(v) = c»* (cubic law):

d = — v? 20 y where
g o= 1 ,
dy=— 35 tan 0d0 cos d [C’ - 330 (tan 6 + }tan? 0)]
< o 26 ( and .
gcos @ C= (o o0s ) ¢)3 (tan ¢ + ftan® ¢),
_ v dd 1
dS——g-ém ) 0r0=v—83.

The integrations for», ¥, £, s, lead to elliptic integrals, whena =0,
and n=3 or 4.

Corresponding tables based on the tables of Legendre have been
constructed by Greenhill for » = 3, and Sabudski for n = 4.

Remarks on similar trajectories. Rules for comparison.

On the assumption of the law ¢f (v)=cv™, and integrating with respect to 6
from ¢ to 8, we had

1 1 __mc (¢ db
(veos 8 (wpcos ) g J4(cos B+ T’
whence vcosf= 008 é = (1)
[1 ~2 (v, cos ) f {cos 6)"“:|n
In the general case
gds=—1v?cos?d - a8
\ cos’ @
*and gdt==vcos 8 dfe ’
so that, between limits 81 and 6,
@ cos ¢) = s rrreenar (2)
e 3
[1 (vo cos ) f . (cos o ﬂ] cos3d
gt -
YT e (3)

’ [1—— (v cos ) f (o5 G)M,Tcoseo
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112 Approximate solution [CH. IV

Next, we consider two trajectories 4 and 4’ of different projectiles, fired at
the same angle of departure ¢, but with different initial velocities, v, and »y, and
with corresponding coefficients, ¢ and ¢. Let s denote the arc of the 4 tra-
jectory between an initial inclination 4, and final inclination 8; and & the
corresponding arc of 4’ between the same inclinations.

The trajectories 4 and A’ are called similar when the ratio s : & of the arcs of
the trajectories is constant between the same initial and final inclinations.

It is assumed that the same zone of air resistance is under consideration, and
also the same power law ; and so, with constant ¢, 4, §; and =, that

;

gs_______ 8¢
(vcos ) (v cos )2’

that is, s : &' is constant and equal to vy? : 2y’ provided that

¢ (vpeos Pyt =c (v, cos p), or cpt=c'vy™
In this case then,
W—.%(:S_¢= 5;,—5:)8—(1), or ¢ : ¢’ is in the constant ratio of v, : v,’.

On the two trajectories, and at the points where the final slope 8 of the
tangent is the same, let the velocities of the two shells be denoted by » and #.

It is obvious, as ewy"=¢'vy®, that from (1) we have the relation v : v/ =vp: vy

Thence also co®=c'v'", that is the retardation due to the air resistance is of
the same magnitude at homologous points of the two paths, with eqnal 4.

To sum up, we have then the following proposition. If the same power law
holds for the two shells, and further, if they are fired at the same departure
angle ¢, with velocities such that the initial retardation due to the air resistance
is the same for the two shells, then the arcs s and ' of the trajectories of equal
curvature, contained between equal tangent inclinations, are in a constant ratio,
and this ratio is that of the squares of the initial velocities, 8 : 8 =% : %42

So also the corresponding times of flight are in a constant ratio, viz., that of
the initial velocities; ¢: ¢=wvy: vy

Finally, the retardation due to air resistance at homologous points of the
two paths, that is between equal tangent inclinations, is the same for both the
shells. ’

These laws of similar trajectories are due to St Robert and F. Siacci.

An application of these laws of similar trajectories has been made lately by
E. Roggla. By means of the range table of a known gun, he obtains the elements
of the trajectory of a howitzer or a mortar.

With the same air density, and the same shape of the shell, the ballistic

coefficient ¢ is inversely proportional to o where P is the weight of the shell,
Ry the cross-section.

Thence the statement can be enunciated in the following manner :

Denote by », the initial velocity of a gun 4, x the horizontal distance, and »
the velocity after ¢ seconds; z, is the vertex abscissa, v, the vertex velocity,
t, the time of flight to the vertex; X is the maximum range, at about 45°
elevation, 7 the corresponding total time of flight, », the final velocity, P the
weight of the shell, R?r the cross-section, ¢=P : R?r the sectional density of load.
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§21] of the ballistic problem 113

Denote the corresponding expressions for another gun B by v, «, 7, ¢, z,,
v/, ¢, X', T', v/, ¢. The values «, ¢', ¢ for the gun B are to refer to a point on
the trajectory at the same tangent slope as z, ¢, » for the gun 4.

In both cases the angle of departure, the air density and shape of the shell are
taken as being the same,

It follows then that, if v? i vy i=q: ¢,
then v2ivi=q:1¢=2:2=2,:2/=2X: X, nearly,
and vl vt=v2 i vi=m 9l i 2m 02 0,/Y nearly;
and further tit'=t, 1t =vy:9)=v:7" = v,:7,, nearly,

where 2, t’ denote the times of flight of the two shells over the arcs s, ¢.
Ezample. In an American coast mortar, 2 =254 cm., I>=274 kg, sectional
density of load ¢g=054 kgfem?, v,=2352 m/sec, maximum range X'=10,500 m,
when v,=298 m/sec.
These numbers are to be applied to another gun with ¢'=0343 kg/cm? (with
equal 8 and ¢). How great should be the initial velocity vy ; what will be the
maximum range X" ; and what the final velocity v, ?

X':10,500=0343 : 054, v,2:3522=0343 :054, v, :298=v, : v,
Thence X’'=6670 m, v,=280m/sec, v/=237m/sec.

This rule stands in intimate connexion with the one given by Newton and
Froude, and in its most general form by von Helmholtz (see notes to § 13).

An extract from these rules states :—If experiments with a model are to be
carried out, so as to give results for another body moving in the same medium,
such as air, and if the linear dimensions are to be altered in the ratio of =,
then the squares of the velocities and of the times must be altered in the same
vatio n.

In the preceding case, with similar shape of shell and same material, the
sectional density is nearly as the length of the shell, and this is proportional to
the other corresponding lengths. ’

§ 21. Method of Euler-Otto.

In the year 1753, the well known mathematician L. Euler gave
an approximate solution of the ballistic problem, which is still of
importance for an initial velocity v, < 240 m/sec, and at the same
time a guide to the calculation of corresponding tables.

His method depends on the summation of dz, dy, df, ds. He
treats the trajectory as a polygon of an infinite number of straight
arcs As, and thence makes up the finite expression for the cor-
responding projections, Az and Ay, as well as for the corresponding
time At; he then sums up the Az, Ay, At to z, y, t. He assumes
the quadratic law of air resistance.

C. 8
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114 . Approximate solution - [cH.1V

The expressions which arise in the calculation are deduced as in
§ 20, and it need only be shown here how Euler carried out the re-
maining summations.

Consider two adjacent points, M and Jf;, of the same branch of
the trajectory, and put SM=s, SM,=s, for the arcs measured from
the vertex 8.

According to the above,

SM=s=—21—Glog0—_#, SM1=31=21010g0_g(51),
and so the small element of arec M1, or
~ L 1g =@
ST-£@)" .

The inclination to the
horizontal of the trajectory
is @ at the point M, and 6,
at the point M, and Euler
now treats the element of
arc as nearly straight, and

having a mean inclination
3 (8 + 6,); and therefore

C—§(6) 9+6

Ax =

1y
=% 8BT—£@ " 2
1

0 £y 0+6
§T-£@) " 2 -

These projections, Az and Ay, of the arc As are then to be
summed ; thus ZAz =2, 2Ay =y.

In an example Euler took the difference of the inclinations € and
0,; of the trajectory as being 5 degrees. The corresponding time of
flight was given then from the relation

. Ay=

2¢(vcos = T=ED E(H)

and so

_Az 1, C—§@0) 0+6 VIVT—E®)
= cos0- 2 80— 5(0) 2 Vg ’

Whence the time of flight follows by summation ¢ = JA¢. .
As it would be exceedingly wearisome to carry out the caleulations
in"every case, together with the summations 2Az, ZAy, SAt, we must
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sct to work to construct Tables which allow us, for any trajectory
whatever, given by the values of ¢, @, %, to obtain the elements of the
trajectory, viz, range X, angle of descent w, final velocity v,, vertex
abscissa x,, vertex ordinate y,, and so forth.

Euler set out on the following principle, so as to reduce to a mini-
mum the trouble of constructing the Tables.

Let the formulae above, for £Az, SAy, £A¢, be written in the form
C-£@), 0+6
C- E(G) 2
C-¢ (0,) 0 + 6,

= TC) R

Sot= V3GSAL= S log 00 0+ 6, V[C—E@)]
V2t =V2cSAt = = log 0@ “ 3 Vs

The right-hand sides of these equations involve only C (or the
angle B of inclination of the asymptote) and 8, which vary along any
trajectory, and from one trajectory to another.

We assume then ¢ =1 for the present, and consider first for any
assumed value of C the series of Az, Ay, At, calculated from degree
to degree of 6, by the formulae above, for the ascending branch; and
after this with C+ £ for the descending branch, the summation being
made starting from the vertex where 8=0.

The different trajectories can then differ only in the different
values of the angle ¢ of departure. _

But it is evident that all these trajectories are congruent to each
other; for they are merely greater or smaller parts cut off the same
curve, reckoned from the vertex.

We have obtained then, for any and every C, the elements z, y, ¢
of a complete series of trajectories, with different values of ¢.

Expressed otherwise, when ¢ is not restricted to the value unity,
we have, for any given value of C or B, the elements 2¢z, 2¢y, +/(2c) t
of the various trajectories, which differ in the angle of departure ¢.

We suppose this to be carried out for another value of C or 8,
and so the elements 2¢z, 2cy, 4/(2c) ¢t are known for a second series of
trajectories, for various values of ¢ ; and so forth.

The Tables should then be calculated, grouped for the different
values of C which can occur in practice; and they will show in each
group, and for every single ¢, the values of ¢z, ¢y, ¥/(2¢) ¢, as well as

2cx = 2c3 Az = 2 log

2y =2c3Ay =X log

of ';Ez, which does not involve c.
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Tables were calculated on these fundamental laws by H. Fr. von
Jacobi (these tables are lost), by Fr. P. von Griivenitz, 1764, but
notably by J. C. F. Otto, 184.2.

They have been extended later by Mola, Scheve, Siacci, Lardillon,
Braccialini, and others, and arranged differently for convenience of use.

Otto calculated his Tables, in 1842, for the various values of B
between 35° and 87°, mostly rising by 2 degrees at a time; and then
between 30° and 75° rising by one degree at a time.

Since the value of C (or of B) is given by cy,? and ¢, the Tables
are arranged for practical use in groups for different values of ¢, and
in each group according to cv,2

Also the elements are given of ¢X, w, v,, T : 4/ X of the point of
fall on the muzzle horizon, and also y, : X.

This method can be illustrated by the following extract, where
for instance ¢ = 60°.

2eX vy’ v w e T \/ 9 Y
g 29X v, X X
1-30 1633 1-256 72° 19’ 0584 2-1356 0573
1-35 1-759 1-:303 72° 44" 0570 2-146 0580
1-40 1-894 1:353 73° 9 0°556 2-157 0586

Use of Otto’s Tables for the solution of a particular trajectory.
(See also Vol. 1v.)

The range in metres on the muzzle horizon is denoted by X, the
angle of departure by ¢, the initial velocity in m/sec by v,, the acute
angle of descent by o, the final velocity by v, in m/sec, the time of
flight by T seconds, height of vertex by y, m.

The retardation due to air resistance is ¢v? and here

Rir.ix.8.g
Px1206 °’

where R is the half-calibre in metres, 8 is the air density in kg/m?,
g =981 m/sec?, 7 is the coefficient of shape of head (=1 for Krupp’s
normal shell of 2 calibres as radius of the ogival head, or 1-3 calibre
as height of ogive, or 41°5 half ogival angle at the point), P the p
weight of the shell in kg; A =0014 for a velocity less than 240

m/sec (but if less accuracy is necessary, the tables can be taken'®
g

C=
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with A = 0014 for all velocities less than normal sound velocity, and
with A = 0039 for velocities greater than sound velocity, up to about
1000 m/sec).
1. Given ¢, v, ¢.
2
Let us start with 2%, which can be calculated from the given
values of v, 8, ¢, R, P.
Look out in the group of given angles of departure ¢ and for the
2
0

calculated % along the horizontal line the corresponding value of

2¢X, whenee X is found ; as also the value of w, and of %‘ whence v, is
(]
found. Interpolate where required.

3. Givene, X, ¢.
Starting with 2¢X, look out in the ¢ Tables the values, on the

. . . Yo CUE U2
horizontal line corresponding to 2¢X, of <, —, —~, ..
v g’ 29X

obtain, with interpolation where required, the trajectory elements
Voy Uy, X, oene

3. Given ¢, ¢, w.

A start is made from o.

4. Given v, X, ¢.

., and so

2

Uy
29X °

The start is made from

5. Given c, v, X.
2
Start from 2¢X and c_’ugi’ and interpolate.
If the alteration of air density with the height is to be taken into
account, a calculation is made with a first approximation of 3, and ¢,

to find the vertex height y,; and the calculation is repeated with a
closer value of c.

Example. Given the angle of departure ¢p=60°, time of flight 7’=4065 seconds,
range 3,520 m. To find vy, v, @, Y.

981
Here T I’=4O 65 3590 =2-1416; and thence from Otto’s Tables,
'002 _*@2____1.303. th =300 m/sec
ZgX T 2x 0Bl x3520 oo Lienee = y
Further, & = ;845 0380, 5, = 2042 m; & = 5055 =0'570, v,= 171 m/sec.

Lastly o=72°44'.
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Notes. (a) A. M. Legendre pointed out in 1782 that an error is contained in
Euler’s procedure, where the Az and Ay are calculated as if they were the projec-
tions of the ends of the arc elements As, treated as straight lines, as the projections
Az and Ay are too great. Therefore he takes a circular element for As, instead of
a straight line; and finds (consult Didion for the proof)

6,-8

sin 6-8
2

Az ={(Euler Ax) —- = Ay=(Euler Ay)
a-—=z

sin
6-8 °

. 2 2

Didion showed later, in 1848, that this procedure of Legendre leads to no closer
result than that of Euler.

(b) A method corresponding to that of Euler, for the quadratic law of air
resistance cv?, was brought forward by Bashforth in 1873, based on the cubic law
¢,

This theory is considered below.

(¢) A. Bassani has carried out the integration on the assumption of the
quadratic law of air resistance, on a method where the function

3pd (14 PP+ log [V (1+p%) +p]
which occurs in Euler’s solution, is replaced by the approximate value
p (1+02523p%)
1+00912?

§ 22. Method of F. Bashforth.

As mentioned briefly already, F. Bashforth assumed the cubic
law of air resistance, and retardation c¢f(v)=ct®, where ¢ varied in
different zones of the velocity, as the basis of a method of solution;
and corresponding Tables were constructed on the same principles
as were employed by Euler and Otto for the quadratic law ¢#* and
by Sabudski for the biquadratic law.

The relation between the velocity » of the shell in its path, and the
corresponding angle 6 of slope of the tangent of the path to the
horizon, is given, as proved in § 20, in the form

1 —_—
(veos 6P
Let us put

3
vcos 8 =1, \/%=x, 3 tan € + tan® 6 = B (0),

- %c (tan 0 + 4 tan® f) + the integration constant A.

and determine the integration constant 4 from the relation at the
vertex, when 6 = 0, v=1v,; then the equation can be written

Vs

\7[1 -%33(0)] '

Vg =
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The general expressions for dt, dz, dy, namely

It = v, d8 e — v2do v v, tan0dé
=" gwso’ T Tgeosd’ YTT Tgeowe

lead then to

=T (jj cos® 6\/L1——B(8)J

w=—v98‘J cose\/tl——B(G)J ’

y=_v_g“" atanﬂdﬁa_ )
g%coszﬁ,\/[l—%B(e)]

We see that these integrals depend only on 6 and the value of
1_!,5’ because B(8) involves 8 only.

These integrals are denoted for brevity by 7, X, Y'; and F. Bash-
forth has calculated Tables for them, corresponding to values of
Vs
—and 6.

K

Values of the integrals are required between the limits ¢ and 8;
for instance,
Tobt =T+ T o =T -T2
It is sufficient then to have the integrals reckoned from the
vertex (6 = 0).
The formulae are therefore

o= +‘X¢—+ (Xod*—X“) .................. 1)
v Vs

R G S L COED & P (@)

t—-+ To¢—+”8(T¢—To°) .................. (3)

veos == U”s N PN 4)
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v, COS ¢

(/[1 + i—‘zB (¢) cos? 4)]

Vg =

The calculation proceeds then with the aid of the Tables for values
of (%’)8 and @, for X, ¥, T, and a Table of B(8) for values of 6.

For instance, if the calibre is 2R, weight of shell P, air density 3,
initial velocity v,, and angle of departure ¢, we calculate from (7) the
value of «, take out from the Table of B (6) the value of B(¢), and cal-
culate from (5) the vertex velocity v,.

3
For any selected value of @, and the value of the fraction U—I:é, we

have the tabular values of X, ¥, T'; and from (1), (2), (3), the trajectory
elements , y, ¢, which correspond to 8, the angle of slope chosen.

In the special case of 8 =0, we have the vertex coordinates s, ¥,
and also the time ¢, of reaching the vertex.

Numerical example. Given 2R=02286 m, P=1109 kg, #,=3155 m/sec,
¢ =435, §=1206 kg/m3, ¢=1, to determine the height y, of the vertex.
g P 110°9

34 = 2 =45
ST o 0-000060 x (0-1143)2 x 3'1416 45,033,000,

B(¢)=3tan 42°5 +tan®43°5 =37015,
e 3155 cos 43°°H
o \8/ 1+ (315°5 cos 43°°5)3 % 3-7015 |
45,033,000

'vi3_ (as21yp
e —m =0-1341.

=18211,

3
The Y table gives, for <%’> =01341, and 8=0, the value F®5=0-58195; so

that the vertex ordinate

vty 4 _(1821y

g 981 x 0568195 =1966 m.

In the approximation methods of the First Group, the “Method of
Velocities” can be included, which E. Vallier employed for the integra-
tion of the exact differential equations.
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An extension of the Simpson Rule is used which can be employed
for the calculation of any long trajectory, in which the air density is
variable to a marked extent.

See also the notes on this chapter.

The methods of series-expansion can also be included in the First
Group, of which an account is given in § 22 a.

§ 22 a. Method of Development in Series.

Where a function F(z), in the interval 0 to z, is finite and con-
tinuous, together with its first n + 1 derivatives, assumed also to
exist, F'(z), F"(x),..., F»+) (z), then, according to Maclaurin,

F(z) = F(0) + 2F"(0) +57 F “(0) +.. + F‘"’ (0)+ aremainder term R,

where, according to Lagrange,

xn+l
=@rm/

€ being an unknown fraction between 0 and 1. Or otherwise, in an
integral form,

=
R=> (w — tyn Py (1) dit.

n’ t=
So that if F(x) is calculated by this expansion in powers of «,
7
and if in the calculation the series breaks off at the term %F‘"’ (0),

an error R will exist, the limits of which can be determined, but this
can only be employed when it has been proved that forn=0c, R=0;
in other wérds, that the series converges.

In the preceding case we may calculate the trajectory ordinate y
in terms of the corresponding trajectory abscissa «, by an expansion
in a series. Then

F(“’) =Y F(O) = Yz=o>

F'(z)= d =tan §, F (0)=tan ¢,
F(z) = d_ﬁ;‘é‘ﬁ =~ o gy e S 1), F/(0) = o

2vcos § d(vcos8) dt
(v cos By dt d=

F"(x)=-g¢g % (veosO)2=+g
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or, since
d(vcos6)'

pr —¢f (v) cos 6, and Slﬁ:vcos g,

dt
it follows that
g 2g¢f (v) cos @ ey 290F (v,)
F7(@)= (veos @y F(0)=- vy cos® ¢
Proceeding in the same manner, we find

A E———

and so on.
So long as the shell is above the muzzle horizon, y and its deriva-
tives with respect to # remain finite and continuous. Therefore we

obtain the expansion of y in terms of « by substitution of the calcu- -
lated values F(0), F'(0),... in the series above.

The slope @ of the tangent will be obtained thence from tan 6 =

through a single differentiation, and v cos # the horizontal compon(inb
of the velocity from vcosf= \/ - (see §18) through a second
differentiation.

Finally the time of flight ¢ is calculated from dt =#d026, by means

of an integration, while {= 0 for =0.
In this way we obtain

9« 90f(vo)( @ )3

y=atan ¢ — 2(vycos P)? T T 3u, \w,cos ¢

_% Hgé)(:)—“)} 3 {cf(vo)} {ef () + g sin 4’}] (v cos ¢>* .

+ ... +aremainder R;

_ _ g% 2 ¢f () . .
or y=atanao 2oy 005 B l:l + 30 608 ¢x+ ... | +a remainder B
............ (D)
- L of (%) :
tan 6 = tan ¢ (0 005 &Y [1 + oo b z+ ] +a remainder R
L e, 2
% of (%) -
t= meosd [l + JuTcos @+ ] +a remainder B ......... 3
[ Cf (”0)

vcos 8 =1v,cos ¢ I_l ] +a remainder R. ...... (4)

UK cosd:
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Here, for instance, if the biquadratic law of air resistance,
¢f (v) = cv*, is taken as the basis,

¢f (Vo) = cvg, (cf (Vo)) = (CV*)zmo = dctig?, [c:f—l(—:”—)], = 3cv,?, and so on.

The expansion in a series can be constructed in this way for any
law of air resistance.

Expansions of this kind have been worked out in different ways
since the end of the 18th century, with either =, or ¢, or 6, or &, as
the independent variable (Lambert, Borda, Tempelhof, Otto, Heim,
Francais, Pfister, Denecke, Ligowski, Netimann).

The convergence of the series was either assumed as evident, or
briefly discussed.

Even the later work of P. Haupt (see Note) is not rigorous.
C. Veithen was the first to give a rigorous proof that the ballistic
expansion in a series of powers of «# and y, as a function of ¢, con-
verges for all finite values of ¢, in all cases where a certain assumption
is made with regard to the air resistance function.

The following abstract may be given of the method of C. Veithen (see Note).
A system of real ordinary differential equations of the First Order may be
considered :

% st Ly b,

and the functions ¢ and  may be supposed to be expanded in a power series of
t—ty, £—&p, 1 —1,, which converges for all values of these differences.
In this case, £ and n represent definite uniform functions of ¢, which satisfy
. the differential equations, and assume the values £¢=§,, n=ny,, for t=¢,.
These functions can be expanded in power series of £— ¢,
E=&+E (=t Ferninnnne
n=ng+m—1t)+.rreren
" which converge for all values of £—¢,.
Now the fundamental equations can be written in the form (compare § 17,
equations (1) and (2)),

d d
L_roe  D=reyr-g
wherein we find
_dv : _dy
5—(—12 =wvcosd, n=g, =Vsin 6,

o=y, Foy=- LY

For the finite region of v which comes into consideration, we can approximate
with sufficient accuracy to the empirical function F(v), so long as it is every-
where continuous, by means of a finite polynomial in 2,

F(’l’)=a1’02+(12'”4+(13v0+ """"" +a.”2n;
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that is, we can express, with the required accuracy, the right-hand side of the
differential equation by polynomials in &, .

On these assumptions of the air resistance, the above laws hold ; and we
see that £ and 7 are capable of being expressed in a power series of 7,

=+ &+ &+
p=ngtmt 4+l
which converge for all values of ¢, and &,=1v, cos ¢, ny=7; sin ¢.

It follows then, that the expansion of # and g, in terms of ¢, converges also for
all values of ¢, where

[2
x=/6 Edt=¢t+at+......

4
y=f0 ndt=nyt 40yt +......

Supposing that only the first 3 or 4 terms of the series in (1) are employed,
we know then that the trajectory can be regarded as a parabola of the 3rd or
4th order.

This is the procedure, for example, of B. Prehn, Dolliak, Piton-
Bressant, Hélie, Mieg (the last calculating with arithmetic series
of the 3rd or 4th order).

SOME APPLICATIONS.

1. Method of Piton-Bressant, and of Hélie ; formulae of the Givre Committee. )

Series (1) was taken, breaking off at the 3rd term. The factor g va (v0) s VA
o
denoted by XK, and determined from the range.
Thus we have {compare also § 18)
= — __'q._.xf_ Y
y==x tan ¢ 2?}02 cos? ¢ (1 +Ax)’
anf=tand— —I¥ .
and thence tan f=tan ¢ Iort o (243K=).
When =4, 3/ 0, = —w ; so that if we put 1 4+ A X =27, then
:2.04 g2 sin 2¢

t = =
A TON=ry L ¢
and Z denotes the ratio between the range in a vacuum, and the actual range .Y

in air, for the same ¢ and »,.
At the end of the path,

1

tan (- o)=tan ¢ — —I2 @+3KN)=tan ¢~ 22824 3(7-1))

29,2 cost
=tan ¢ (2 - 2) .
And further, since — "= lm (1+3A%),

Digitized by Microsoft ®



§22al of the bullistic problem 125

= e
we have i veos = T +3K7)°
and, at the end point,

Y COS® _ 1 1
weosg  JA+3AY) " JBZ-2)

Finally, the time of flight is given by integration of

dt—dx,\/ 7 = c05¢ J(1+3Ax) dx,

2

91127 cos ¢ [ +3l\.z,) -1

and this, with A’ 2] 1—, can easily be calenlated for the end point of the path.

¥
The abscissa of the vertex &, follows from the relation §=0.
The following system of formulae is thus obtained :

(@) For any trajectory,

gt 5
y=xtand— T cos¢)2( FHE) i (5)
where A is determined from
1+ KX =280 20 e, ©)
g«
: tan §=tan ¢ — ——To_ (2 +3K) )
= S con gt CHIAD) o
vcos d 1
vo o8 4): \/(1 +31‘,$) ................................. (8)
2 (+43kz)i-1
=Gncd e e eeeerenrieeran e erre 9)
(6) For the vertex,
_VO+3EY(1+K)]-1
RN (10)
- 1+2KX
R T R (11)
(¢) For the end point in the horizontal plane through the muzzle,
‘ tah 1
m=2——z=f|<z) ................................. (12)
vCoSw 1
v()—cag¢— /(3Z—2)_j2(Z) ........................... (13)
Tegcosgp 2 (3Z-2)% -1
°X ¢ 9( 2 )1 B 210 N UORO (14)
g And here Z=1+K: ;L;‘\{Ef. ........................ (15)
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It is often found that, for the same shell and the same initial velocity, & is
independent of ¢, and so can be treated as a constant in the correspondiug Range
Table. As a matter of fact, K depends on ¢, as is seen immediately from the
expansion in (1). It is somewhat better to work in equations (5) to (9) with A as
constant, where A';=A cos ¢.

A table is given for £, (%), f2(Z), f3(Z) on the next page.

Ezxample. Given X=3300m, with ¢=10° and v,=354 m/sec. To find
&, ¥, w, and T for X=4000 m.

We find K from

. 354%7sin(2x10°) .. 032
1433008 = —55Tx 3300 3300 -

For the range X'=4000, the corresponding angle of departure ¢ is calculated

354% xsin 2¢ ., 0°32x 4000
9-81 x 4000 T 773300

Then for this range, since Z=1388, and thence from the Table, f(Z)=1:279,
J2(2)=0680, f3(£)=1250,

from =1-388, then ¢p=12° 53".

tan w - o 1qr .
fanioesy— 12795 w=16"18";
vec0816°58" oo .
351008 12:,53,--0 680; v,=244 m/sec ;
T x 354 cos 12°53° .
=1250: =145,
00 1250; 7T=14

The values of ¢, w, 7, 7, calculated 1n this way, are in fairly good agreement
with the truth. But if we should proceed, for instance, from the data for the
range of 3300, and the corresponding value of X, to determine the elements of
the path for a range of 6000, the error might be serious.

2. Method of Duchéne (French).

The equation of the trajectory is to be assumed to be of the form

_ ga? Az Ba? >
y—xtan¢—2——(7jocos¢)2< + c_os¢+c_os2¢ ....... veeo(16)

in which 4 and B are to be considered as dependent on v, for the same shell, but
as independent of ¢, that is, as constant in a corresponding Range Table.
To determine 4 and B, we employ two definite values of X and ¢.
Substitute then in the equation

v’sin2¢ _ 1+ X BX?
g‘k’ ha coS¢ cosz¢ ---------------------------

and we have two equations for the unknown quantities 4 and B. Given, for
example, for vp=>529 mfsec, X;=1800 m, ¢; =228,

Xp=2200m, ¢,=3"12,
we find ) " A=1984x10"% B=1-724x10"°.
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Z HiZ%) J2(4) JdZ)
100 10000 10000 10000
105 10476 0-9325 10366
1'10 10909 08771 10716
115 11304 08305 11052
1:20 11667 0-7906 1'1376
125 12000 07559 1°1689
1°30 12308 07255 1-1992
1-35 1-2593 06984 1-2287 .
140 12857 06742 12573 1l
1:45 13103 06523 1-2852 £
1:50 13333 06325 13124 o
155 13548 06143 1-3390 )
160 13750 05976 1-3650 o
1'65 13939 05822 13904 e
170 1-4118 0'5680 14153 +
175 14286 0-5547 1:4397 -
1:80 14444 0'5423 14637 Q
1:85 14595 05307 14873
190 14737 05199 15104
195 14872 05096 15332 .-
2:00 1-5000 0-5000 1:5556 )
2:05 15122 04909 1-5776 3
2:10 15238 04822 15993 .
2-15 1'5349 04740 1:6207 5
2:20 15455 04662 16418 =8
225 15556 04588 16626 *
230 1°5652 04517 16832 0
2:35 15745 04450 17035 &
2:40 15833 04385 17235
245 15918 04323 17433
250 1:6000 04264 17628 2
2:55 16078 04207 17821 N
260 16154 04153 18012 <
265 16226 04100 18201 &
270 16296 04049 18387 =
275 1-6364 0-4000 18571 8
280 16429 03953 18754 S
2:85 1'6491 03907 1-8935 I
2:90 1'6552 0-3863 19114 3
295 16610 03821 19291 g
30 16667 0-3780 19467 >
31 16774 0-3701 19813
32 16875 03627 20153
33 16970 03558 20487 oy
34 17059 03492 2:0816 N
35 17143 0-3430 21139 3
36 17222 0-3371 21457 I’
397 17297 03315 21771 =
38 17368 03262 2-2079 k]
39 1°7136 03211 2:9384 I
40 17500 03162 22684 g
45 17778 02949 24126 Fi
50 1-8000 02774 25485
55 18182 02626 26772
60 18333 02500 28000
70 18571 0-2294 30303
80 18750 02132 3-2441
90 1-8889 0-2000 34444
100 19000 01890 36336
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128 Approximate solution [cH. 1V

Then for the same shell and the same ,, but any arbitrary angle of departure
¢, we calculate the elements from

E : ‘, y=xtan¢—2—(%i——'§z¢)2(l+p+qp2) e (18)
tan d = tan ¢ — (v—(’%d;)—z (l + gp+ 2gp2) .................. (19)
¥ cos O=vycos ¢ (1 +3p+69p2)t ... ................ (20)
t=;o—£;$;) f:J(l +3p+69p2) dp «oovnnniiiriniiininnd (21)

where I cﬁ_sdfb = p, and %=q,

This method of Duchéne, with regard to (1), is more exact than the preceding,
but less convenient.

3. If it is proposed to represent a given trajectory by a rational integral
algebraical function of the 3rd or 4th degree, so as to obtain, for any given
distance #, the height z, and thus to determine the trajectory, a great many

methods are possible.
A parabola, for instance, of the 3rd Order,

. ¥=a+aw+as®+agd, .
is given by the range X, the angle of departure ¢, and the acute angle of descent
@, through the four conditions that, for

2=0, y=0, ¥'=tan¢ ; and for =X, y=0, ¥ = —tan o.

With these conditions

y=xta.nc]>—2—@n—¢——lfwm"x2 —w‘;:ﬂqﬁ F (22)

A parabola of the 4th Order,
y=ay+ a2+ agx?+ azad+ay 24,
is given for instance by the angle of departure ¢, the initial velocity #,, the
range X, and the angle of descent (acute) w; since, for

=0, y=0, y'=tan ¢, v5cos = J 2

and for 2= X, y=0,y=—tanw. And so we have the five conditions.
From the first three relations we have at once

= - _,QL 2 I .
y=ztan ¢ 3ogcon ¢)2(1+Ax+Bx ) TSI (23) -
The two coefficients A and B are then obtained from
AY4pxe=t0sin2e .
9X e (24)

34X +4BX?=(tan ¢ +tan o) QL‘F;I—‘;@ -2
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22 ¢ of the ballistic problem 129

For example, given v,=406 m/se¢, ¢p=35°, .Y =8700m, w=46°19., Then

4318 o -2,
8700° © = (8700)
Otto’s Tables, y,=1855).

Now if the coefficients are known, the height y of the ﬂlght for different
distances x is calculated on Horner’s method, and if a considerable number
of equidistant values of # are considered, we make use of arithmetical series. But
without any calculation and merely with the use of millimetre squared paper and
a set square, ¥ can be obtained graphically for any value of .

The tracing of such a parabola of a higher order can be carried out in a
simple manner by the use of the Abdank-Abakanowitz Integraph.

The principle is as follows: A function of the 4th Order, for instance,
y=a12+agx®+ azx®+ a,2* is proposed, with known ceefficients.

Differentiating three times, we have ’

¥ =a;+2ax + 3aza? 4+ 4aad,
y'= 2az + 6agzr + 120,27,
Y= 6az+ 24a,.

The last equation represents a straight line, in the coordinates # and y”.

This line is drawn, and then treated by the Integraph tracer, with the inte-
gration constant determined from the condition %”=2e for #=0.

The parabola so obtained, of the 2nd Order, is treated again in the same way,
and the integration constant given by the condition ¥’ =a;, for 2=0. A parabola
of the 3rd Order is obtained, and this again is integrated, with y==0 for £=0;
and in this way the parabola of the 4th Order is drawn, representing the
trajectory.

The intersection with the z axis gives a real root of the equation

O=a,2+ axx?+azad+ agat,
and therefore the range x=.X for which y=0.
Consult the Praktische Analysis of H. von Sanden for details of the

thence by means of (23) y,=1900 m (but according to

‘numerical and graphical methods, and for the procedure of the mechanical

integration consult the treatise of Abdank-Abakanowitz—.Les Intégraphes,Paris
1889, and compare the notes to this chapter.

4. When an ordinary Range Table is available for a definite system of gun and
projectile (for a target on the muzzle horizon) we often have to determine the
elements of the trajectory which do not lle on the muzzle horizon, with the help
of the Range Table alone. *

For this purpose the methods of the French dide-Mémoire may serve.
These depend on the assumption that the equation between x and y of the
trajectory has the form "

y=x tan ¢—2v02‘chﬁF(x) .................. vevesaans (@)

This assumption is indeed of a somewhat general nature, but as we know
from the expansion in series (1), it cannot be exact, even if we are considering
one and the same system of gun, shell, air density and initial velocity. For the
angle of departure ¢ is a vana,ble in the, Range Table, and the function F(r)
depends on ¢.

[+ 9
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130 Approximate solution [om. 1v

For the same weapon and loading the equation above may be written

y=xtan¢—c{)g3p, ........................... )

whence tan&:y’:tahd;—({; s(zx (;), ........................ )
g L@ =

m— Y _+COSZ¢ ........................... (d)

Here #, y denote the coordinates 04, 4 B of the trajectory OB, or 1, for which
the angle of departure is ¢;
¢ is the tangent slope at B,
and » the velocity, as in the
figure.
We next consider the tra-
jectory 2, having the range
0 P 4 04 or #z, and according to
the Range Table having an
angle of departure ¢, acute angle of descent o, at 4, and final velocity v,, aud
total time of flight 7%.
This trajectory 2 has the equation

y=2xtan (,b,,—(—:'é;%;z,

/(@) g I (@)
whence tan 8 =tan ¢, ~ cos? ¢’ (wcos B cos? b

Then if in this equation # denotes the range 04 of the trajectory 2, and at
the same time the abscissa O4 of the point B of the trajectory 1, we have

. 0=z tan ¢”_cofs(f<;>,’ ........................ (e)
tan (- wg)=tan ¢,—cf0'sg‘21, ........................ )

‘ g £ (=)
O Tt R @)

Eliminating f(x) between (b) and (e), f'(x) between (¢) and (f), and f* (x)‘
between (d) and (g), we obtain the results

y=x (tan b cos? ¢, tan ¢,,) _Sn 2¢ —sin 2¢,

cos?¢p 2cos? ¢ ’

tan §=tan ¢ — cos? gy tan, cos*op,tanw, y tanw,cos’¢,
cos? ¢ cosl¢p Tz cos?¢p ’

vcosd  cos¢
Vg COS 0  COS by

Finally, the time of flight from O to B is given by

dt 1 cosgy 1
dz T 7080 C0S ¢ Vg COS wy
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and then by integration, from O to 4, we have

o COS ¢y
t="7, cos¢
We have, therefore, the following results:
COS' tan ¢, "
y=x(tan ¢—_c?>;2¢ d)), ..................... (25)
=Y _tano,cosg,
tan 6— GosT P e (26)
2 o8 0 =v,, CON cosé 27
€08 =1, CO8 Wy — B
o €03 ¢y
t="T, Gosgp " T (28)

Equation (25) will serve to determine the height AB or g, when the angle of
departure ¢ is given.

Solved with respect to ¢, we have
1—/[cos?2¢,—2 tan E'sin 2¢,] , tan E—— .........

sin 2¢,

and this scrves to calculate the departure angle ¢, when a given mark B (xy) is to
be struck. Equation (26) determines 8, and then (27) determines the velocity v,
and (28) the time of flight ¢.

Provided the angles ¢ and ¢, of departure are not very different, equations
(25) to (28) can be replaced approximately by the following:

tan¢=

3—’—tan¢ —tan ¢,, tand= z—tanw,, V€080 =v,,CO8 w,, t=7T,.

Slncc y is the tangent of the angle of sight BOA, or E, as seen from O (£ is

the slope of the ground) the first of these equations is equivalent to
tan £=tan ¢ —tan ¢,

or with small angles, £=¢ — ¢, (“Tilting of the trajectory”).
These equations, (25) to (28), provide useful approximations, at least for angles

5. Vallier, in 1886, was the first to employ the remainder R in its integral
form in ballistic calculations.
The corresponding equations for y, 8, », and ¢, are expressed as follows:

_ _ 92 [T [ EO
y=xtan¢ Soico B gjt=o(x t) TS0 :dt’ ceereanes (30)

tan€=tan¢—v—02cg:;v——;z—¢—2gf(x—t)|:vffégg AL v (31)

vcos&:vot;os¢—g—v(oﬂ)2x+%f|:ff-§9] cf(zj)(-;—g:me( —t)dt, ...(32)
of (v)

=%cos¢+f(x-z)[mosm R — rereeeenes e (33)

9-—2
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132 Approximate solution of the ballistic problem  [cH.1v

Except in the third of these equations, the integral expresses the correction
of the equation of motion in a vacuum by insertion of the term due to the space
being filled with air.

A first application by Vallier relates to the deduction in a different way of the
equations of § 25 for flat trajectories.

Suppose the biquadratic law of air resistance is assumed, ¢f(v)=cv4, and sec 6
is replaced in the integral by a constant mean value a (Didion’s mean value).
Then equation (30) becomes

22 t=x
y=xta.n¢-—2v—29;0?a)—gm3f_ (x—2t)2dt

=ztan ¢ — Zo cos2 3 (1+ ca®vy?cos?h. )

as in § 25.
A second application will be mentioned in § 29, for the calculation of an
expression for an adjusting factor 8,
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CHAPTER V

Second group of numerical methods of approxi-
mation. Exact solution of an approximate Chief
Equation

§ 23. Generalities. Comparison of the different methods.

In the preceding chapter, many methods were mentioned, by which
the original differential equatlon called the Chief Equatlon, could
be treated, when written in the exact form

dé gd (vecos 8)

cos’d  wcosd. cf (v)cos 6.
¢f(v) denoting the retardation due to the air resistance; and then
further integrations are made when arbitrary approx1mamons are

gd(vcos 8)=cf(v)vdf, or

. Introduced.

The simplification of the Chief Equation is another method, and
we may replace it by an approximate Chief.Equation, of which the
integration presents no difficulty.

The principle appears to have been employed first by Borda,
1769, and later it was further developed by St Robert, N. Mayevski,
and F. Siacci. Borda replaced the air density 3, which forms a factor

of ¢, by the approximate 8 (and this is exact for two points of

¢

the path) or ¢ is replaced by cc os 6 , assuming the quadratic law,

P
of (v) = ct*
Then, with » cos  =u, we have _
dé gdu gdu _geosgdu,

—_— [
cost  wucricosd cos & ¢ s’

2
ucc—os¢v cos @
and here the variables are separated, so that the integration is at
once possible. Thus, for example,

dm=—1iﬂd6=—-u—2 de __ wgcospdu _ cos¢ du
g )

g cos?d g ¢ c ‘u

cx ey
logu=——c————+log(vocos¢), vcos @ =wv,cos pe °*, ete.

08 ¢

Digitized by Microsoft ®



134 Second group of - : [cH. v

As will be shown later, the solution in the last line is the same
as that of Didion (compare § 29, with a=sec¢). The same pro-
cedure is due to Besout. '

Legendre made many suggestions as to the integration of the
Chief Equation; in particular under an assumption of the quadratic
law, ¢f (v) = c?, he replaced the air density & by

1+ ap? 2
8\/(1_‘_})2), or ¢ by ccos 6 (1 + ap?),
. cos ¢ ]
where p=tan §; and the factor ¢ he assumes = TFoosd" (This ¢

agrees with the true ¢ in three points of the trajectory, namely
for 0=+¢, 0=0,and 6 =—¢.)
Thence the equation becomes the following:

do = dp = gd(veosd) _ gd(vcos 8)
cos?f  ©  wcosH.ctcost  weosB.c(l+ ap?)viecostd
___gdu _gdu
= it ) @’ or dp(1+ap’)= e

In this equation the variables are separated again, between p and
u, or tan @ and vcos 8. And when it is integrated, and the value of
#* as a function of @ is substituted in the general equation for dz, that
is in gdz = —v*d0, then this equation can be solved in a finite form:
and by help of an equation of the 3rd degree, # will be expressed in
terms of p; and y also.

Francais raised the objection to this procedure, that for 8 =1,
and tan = e, the air density will become infinite. He himself, on
1+ atan®d

this account, replaces & by & cos 6 VA +btan?d)’

where a and b must be

determined accordingly.

A more general method, that is applicable to any function ¢f(v)
whatever, whether given analytically or in a tabular form, is the
following :

- Let the retardation due to air resistance be still denoted by ¢f (v).

The exact equation is

v d(vcosﬁ)
d6  gd(vcosb) I\ %

cos’ @ vcos@cf(vycosl vcosO v cos 6 )
| pald b ( {eos 0)) ((cos 6))

(1)
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§ 23] numerical methods of approximation 135

where ¢ denotes a constant, to be determined hereafter; and we have
in addition the equations

A== L0, oo, 2
7 (2)
vd@
dit= _FOS@ g  eeesieresicerssetescrnnnasnans (3)
dy=~ v t‘;“ 0 e, 4)

With the object of integrating equation (1) the simplification is
introduced of replacing the cos 6 under the functional sign £, enclosed
in a single pair of round brackets, by a constant mean value ¢, con-
sidering that along the trajectory or at least along a great part of it,
cos @ varies slowly; replacing also the cos @ between a pair of double
round brackets by another constant ry.

Then the equation is approximately exact

veos 6
cos’f  wcosf P (v cos B) oy f@y )
g ¢ led 'y

where u = v_czs_@ . Thereby the variables 8 and u are separated, and

l
(tan 0) W@ or tanf=tan ¢ — ———[J (w) = J (u,)],
where J(u)=-2¢g W;
and therefore
dm=—v2d0——a—2 wdd  o'w _gdu o udu
g Tyt g o) wf@’
2 a* [4 udy
(m)o == 'Yc ” f(u)’ r=+ C[D (w) =D (wy)],
where D(u)y=- J.}.%
Further
df = — vdd  ou df - gdu _ o du
ST gcs8  gocostf | g loyuf(w) oy fw)’
o (* du o , _ du
t=— GT/L.,f—(u—) =+ (—;Ty[T(u)—- T (ug)], where j‘(u)_—_[f(u)'
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136 : Second group of - [cH. v

Finally dj/ =dztan = dz tan p — Qi_vy [J (u)— J (up)] dez,

or, substituting the above value of dz,

dy=dz tanqb—é%-y[ J (w) aZ}Lglu) J(u.,)dw]

and integrating from y=0 to y, or from w, to w, or from # =0 to «,

y:wtan(b__;l_ [:_.12. MM._WJ(MO):I
_ ) YCJw

2y J (@)
=otng- - [—f %-;—Zm@ (D@ -D @) |,
and, when — f J—(f?.lf()u’l;du is denoted by A (u),

Y= tan ¢ — 7‘2% ([4 () = 4 (ug)] = J (o) [D () = D (uo)]-

The integral values of D (w), T (v), J (u), 4 (u), which are called
Siacci’s Primary Functions, can be evaluated exactly if we assume the
monomial law, f(v) =" or f(u) =" and then entered in a Table.
Thus, for instance, on the cubic law of resistance, ¢f (v)=cv® or f ()=,

d 2
Te=-2 [T =+ g
J d 2 “2udy 1
A== [Tt = - [ g e

For more complicated functions f(u), the integrals must be
evaluated by Simpson’s rule, or by the use of an Integraph.

This is similar to the case when the coefficient of form ¢ involved in ¢ is
replaced by a constant mean value. In such a case, where ¢ is to be expressed
as a function of », as for example

1— 1-3206 ~ 5872 - 00001024,

or, more generally =p~ % -7,

the procedure can be carried out in two ways.

Either we calculate for the purpose an adjusting factor 8, and this will be
explained later in § 29. Or else we proceed more exactly in the way first ploposed
by O. von Eberhard : the function above, for example, J («) is replaced by

<p - .7,—&— ru) du du du du
J(u)=~2g f—W—= —2ypfm+299fu"2f(u)+ 29%%'
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§ 23] numerical methods of approximation 137
Of these three integrals, the first and third are contained already among the
Siacei Primary Functions.
But a new function arises in [ 1;;,——1:—“7 Thus we have seven new functions,

which may be called the Eberbard functions, as opposed to those of Siacei.
Wo must wait for the present for these new functions to be calculated
numerically.

Collection of formulae. Notation.
a? d
O e=ZDw-Dw) D@ =- |7
a du
) =2 [T -Tw) 7=~ |70
(I1I) tan 6= tan ¢ — 2—2;[J(u)—J(u.,)] T (@y=—2g f %
av) y=xtan¢—2:T;2{A (u) - Au)=— J_ﬁ‘.()_:_‘)_di‘
— A)=J@)[D() = D()]
or
(IVa) gy==xtan¢
z (A u)—A4 (u,) '
~sm D= p 0}
Retardation due to air resistance veosd
=cf (v). h—
o and «y are certain constants to be deter- _vcos
mined approximately. ="

If w in (I) is expressed in terms of &, and substituted in (IT), (I1I),
(IV), then ¢, 6, y are given as functions of .

On the choice of the constants o and .

These constants so far have been considered to be arbitrary; but
now we must settle as to how they are to be chosen.

According to the numerous methods of solution proposed in the
course of the last 150 years, it can be shown that they are essentially

contained in equations (I) to (IV), but differ in the choice of o and «.

The corresponding methods are not really derived from equations
(I) to (IV), but rather they have been developed by their authors In
a totally different manner.
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138 Second group of - {cn. v |
Still it is of interest to treat the different methods from a general
standpoint, and to examine their inner connexion.

(a) Borda, 1769, assumes:
1 .
= = e— —_ 2
o=1,vy s on the assumption ¢f (v) = ¢

(b) J. Didion, 1848: o-=ry=§, where @ is some mean value of
sec ¢ between the beginning and end of the corresponding arc of the

trajectory. He chose the air resistance function ¢f (v)=cv? (1 +1;)'), l

¢ and 7 being constants; and therefore ]

w=a_16[1)(u)_D(uo)], u=oavcos b,

t=1 [T ()~ T () o = atty c0S b,

tan 0 = tan ¢ — 5"‘5 [J () = J (uo)),
y=atand—o {A (w) = A (u5) = J () [D (u) = D (u0)]}.

Moreover Didion did not take u as the independent variable in his 3
method of solution, but z, and estabhshed a system of formulae for
t, 0, y, vcos 6, as functions of z.

The mean value for a, employed by him, is

.

)
f sect 0 do
a=2%

-tan § — tan ¢

(¢) St Robert proposed instead, among other things, the arithmetic
mean between the value of sec 8 at the starting point 6= ¢ (and also
at the point # =— ¢ in the descending branch) and the value at the
vertex 6 =0; ie., the arithmetic mean between sec ¢ and secO, or

a=4%(1+seco).

(d) Hélie in his method of solution assumed the geometric mean
between sec ¢ and sec 0, that is a = 4/(sec ). ﬂ

(e) F. Siacci too in his method of 1880 (denoted briefly for conveni-
ence by “Siacci I”) assumed o=1¢ =§ ; and employed them in his

method assuming zones for the laws of air resistance.

—
——a
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§ 23] numerical methods of approximation 139

(f) N.v. Wuich, 1886, also assumes o =1 =% , and the quadratic

law ¢f (v) = c2? with a possible change of ¢ along the trajectory, and
with « as independent variable.

(9) F.Krupp (first procedure): o=y =1; and employment of the
Krupp Tables of air resistance.

(k) F. Siacei, in his procedure of 1888 (denoted conveniently as
“Siacei II”): o =cos ¢, y=Bcos*$, where B is to be taken out of a
Table from X and ¢; so that a first approximation results. Zones are
to be employed for air resistance to determine the dependence on the
velocity v.

The system of equations is then:

o= 5D (W) - D(w)] u=222,
t= e g L =T () to =14,

tan 0 = tan ¢ Wﬁw [T ()= T (),
y=otan = gmre (4 (1) = ()= T () [D ()= D ()l

Similar suggestions were made by J. M. Ingalls (North America)
+ 1900, and by N. Sabudski (Russia), for flat trajectories.

(?) E. Vallier in 1894: here o =cos ¢, =%cos2 ¢, and after a

first approximation, m is to be calculated by a formula.

(k) F. Siacci, procedure of 1896 (“ Siacci III”): again a-—cos¢
v = B cos? ¢

- () P. Charbonnier: as a first approximation ¢ =y =1 (as also in
" the former procedure of F. Krupp), and so

=2 [D @)~ Dw)] u=vcoso,

(=1 [T = T(w)], tty= v, C08 b,

N tan €=tan¢-—2lc[J(u)—J(uo)],

y=wtand— 2%2 (4 ()= A (o) = J (us) [D (u) — D (wa)]}-
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And then we proceed again in a second approximation, taking in the
ascending branch, instead of 8, 8 (1 + %«, tan® ¢), and in the descending

branch § (1 + }«. tan*w),and £ =% [v cos @ J}E” cos Z; 1] . The pro-

cedure is to be employed in flat trajectories, and the air resistance
taken from Krupp's tables. - 4

§ 24. Solution of J. Didion (1848). I

The retardation of air resistance is taken as ¢f (v)=cv?<1 +£)
where ¢ and 7 are the constants introduced in §10. According to §17,

o gd(veos )
dz= d9 or since df = s f @ 1

__wcos 0d (v cos 6)
de=— —W @ deenanracicaraiees (1)
Didion’s method of approximate calculation has already been men-
tioned, in which f(v) on the right-hand side has been replaced by

JS(avcos ) and cos @ by 2; a is then a mean value of sec 8.

Thence, with avcos 6 = u, the differential equation (1) assumes
a form, in which the variables # and u are separated, so that the

. . . . 1 udu
integration can be carried out at once; in fact d‘”—_o? j_‘(—u)’
F=u(1+ ;f) :
— a_c_".llu_. ........................ @)
u(l + —)
r

From this equation an integration will give vcos 8, and further 9,
¢t and y as functions of .

The equation (2) may be deduced in the manner proposed by Didion himself;
but the introduction of % as independent variable in the method of solution was
first employed by St Robert in 1872.

The equation of motion of the shell resolved in a horizontal direction leads to

d?)x_ 5 dx_ v ol_v,,_ v
m._—cf(w)cosﬂ——cv (1+ > %——cv(1+7>vx, or dx——cv(l +;_—).

Didion now replaces ds by the approximate value adz; or v by avs. .
With u=av,=av cos 8, du=ad (v,), the equation will become as in (2) above

ldu U

Digitized by Microsoft ®



§24] numerical methods of approximation 141

The further calculations are as follows:

1 1 U
acdz = -= d(~>,
(Fro)

r

and integrating from 0 to z, and so from u, to «,

1+$ 142
= log u — log 4,
r T

Here u=avcos 8, u,=av,cos ¢; and then by solution for vecos®é,
we have
_ U, €08 ¢
vcosﬂ——(l_'_xo)em_xo, ..................... 3)

S¢

wh en TR P g replaced by «,.

From (3) the horizontal component vcos 8 is known for any

distance z of the shell. The corresponding time ¢ is given by integra-

tion, by means of dt = dTa;‘_’ , after substitution of the value of v cos 8
in equation (3),

di=

Yy COS ¢ [(1 + KO) - KOJ dx’

1 e —1
and = cos I:(l + #y) i /cow:l C ererreenees @)

When relation (3) is applied in a similar way to the equation for 6,
viz.,

—_gdz 46 ___gdz
df= 7 cos20” " (weos O)Y
clt9
then 3 OF d(tan d __7‘-(:osz¢[(l+x°)e — #o)* d,

and integrated from ¢ to 8, and from 0 to z,

g Cax 1
tan@—tan¢=—m[(l+ 0)2

— 2y (1 + 1) & ; 1, x,,ex]. ...... (3)

Finally, since tan f = ‘;—, equation (5) is integrated again with

respect to &, and then y is given as a function of .
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The expressions for v cos 8, £, 8, y as functions of # are stated again
further on.

Didion caleculates the mean value a of the actual variable % or

»/(1 +tan? @) or sec f as approximately the ratio 5 of the finite arc

(OM =) of the actual trajectory, which is under consideration, to its
horizontal projection (OM,=«). This ratio, OM : OM,, he takes as
approximately the same as the ratio s,:#, of the arc of the path of
flight OP in a vacuum (having the same initial and final inclinations
¢ and 6, and the same initial velocity v,), to the horizontal projection
OP,; of this arc: that is
OP _arcin a vacuum with the same ¢, 6, and v, _ s,
*=opP" horizontal projection of this arc Tz

Given the values of ¢, 6, and v,, OP and OP, must then be caleu-
lated on the assumption that the resistance of the air ceases (compare

§ 1).
(¢) Numerator OP =s;:

_[ dyn\*
Now sl—f¢\/[l+(dwl)]d
In a vacuum
2
y1=wltan¢—%—gﬁ— tan 6, =tan ¢ — ‘gw‘

o cos? b vicostg

Put tan 8, = Z—Z‘ =p, so that dp=— Ld— then
1

NO\V
o . _ sin 8
fo«/(l +p)dp=3 [ Sga+10gtan( T+3 9 ] f eyt 1C)
(Table, Vol. 1v, No. 10); thence
2 2
sl=+”°°~—jf-i’[f<¢)—s(6>].

(b) Denominator OP, = ;:
' v,% cos® ¢

(tan ¢ — tan 6); so that

_E@)-£O) ©

:c1 tanqb tand —tanf ettt

According to the above, ;=

a=
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When the arc of flight to be calculated extends from the starting
point (8 = ¢) up to.the vertex (6 =0), we have

_E@ - - -
a—m, since when 8=0, £(6)=0, tan§=0.

If the trajectory is to be calculated as accurately as possible, it is
divided into scveral arcs, of which the parts near the vertex can be
taken of greater length: thus, for example, if the angle of departure is
45°, the division would be made into four ares: say,

(a) from 8= ¢ =45° to §=30°; here
_£(435)—£(30)
~ tand5—tan30 = 1:2772;
() from @=30° to 8 =0 (vertex); here

_E@BO)—E(0) _ £(30)
Ttan30—tan0  tan30 10531;

(c) from §=0 to §=- 30°; here
_ EO)—-E(=30) _£@30) _,. in (b):
= fan0 —tan(=30) _tang0 L 053L asin (b);
(d) from 8=—30° to 8 =~ 45°; here

E(=80)—£(=45) _ £(45)—£(30)
tan (— 30) — tan (— 45) tan 45 — tan 30

= 12772, as in (a).

£@)=¢ 0 f sec® 9lf

The mean value o= g~ can also be determined from
né- f se029d8
another point of view. For if there are z positive fractions, =, 22 %3 %u

"B by’ By T D
bll i(;:_':: I 5 is smaller than the greatest, and greater than the

smallest of the separate fractions, and so is some mean value between them.
Now denote by 4,, 8;, 3, ... the angles of slope to the horizon of the tangent

then the fraction

to the trajectory at various intermediate points. The values of secd or :gg
are thus

sec®p secd, sectd, secdd, to sec® 4

sec? ¢’ sec?d,’ sec?dy’ sec®dy’” Up 0 Sore?
where 4 and ¢ are the end-values of the angle of slope. These fractions are un
equal, but a certain mean value of them is the fraction -

]
secd ¢ +sec? §, +secd fy ... +sec® 4 f sec* 80 _EO)-E(d)

" tand-tan ¢’

3 z z 2
sec? ¢ +sec? 6, +sect gy +... +sec? § f sec? do

as above,
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Statement of the formulae for Didion’s solution.

_ gt _ g% — 2cow — 1
1) y=atan¢— Q0200 & B where B=(1+ «,)? —————% @oany
' —cox—1
=2k (1 + x0) Wﬁ_ K5
_ _ gw " 320 aZ 1
(2) tanf@=tan¢ TEcoTd J J=1+x,)
— 2k, (1 + lCo) =1 + K2
cox >
(3) wcos 8 =uv,cos ¢—117 Vi=(1+ &) €% — &y,
1
@ ; er—1 i
*) t=vocos¢D D= +m) caw " i
_ARmgid
=B P rereeeeeeeeeeseeees (5)
Ko = ;vo COS (P, tirvivririraiiiniiasnrnenennns (6)
_E()—E(H)
= m, ........................ (7)
or, approximately
¢+
4 2
= B e (8)
tan 3
_ &)
or, a= s g e (9)

Here for (xy), the end point of the arc of the traJectory to be
calculated, v is the velocity of the shell in its path, in m/sec; 8 the
inclination to the horizon of the tangent; ¢ the time of flight in
seconds to this point. Further v, is the initial velocity of the shell
in m/sec; ¢ the angle of departure; 2R the calibre of the shell in
metres; & the air density in kg/ms P the weight of the shell in kg;
g the acceleration of gravity in mfsec?; 4 =00270; »=435 (from
v =550 m/sec, downwards; according to Didion, Traité de balistique,
Paris 1860, p. 67); 1 =1 for spheres. The functions B, J, V3, D are to
be put =1 for a vacuum.
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Calculation of some Trajectories. Examples.

(a) Given », ¢p,c. We calculate a from (9) and «, from (6), and then for any
assigned z we calenlate y from (1), 8 from (2), » from (3) and ¢ from (4). If the
rango x=X is to be calculated from y =0, and so from

.
28N 2P ¥ B (2a X, x),

the value of .U is to be found by trial and error, with the assistance of the Table
for B,

If the problem is to be solved more accurately, the trajectory is divided into
several arcs, the first one reaching, say, from = ¢ =45° to §=40°; and then

_£(5)-£(40) |
tan 45 —tan 40’

and thus it follows from (2) that
2 0os?
Jz=(tan ¢ —tan 6) ”"—cg“? ¢,

and since 4 has been chosen arbitrarily (for instance 8§=40°), we find by a tenta-
tive process the abscissa 2 of the end of the first arc, and by means of (1}, (3), (4)
the corresponding values of g, », and ¢£. We now consider the origin of co-
ordinates and the starting point of the first arc to be transferred to this end
point, and calculate again from this for the second are, and so on.

() Given ¢, ¢, and the target (zy), to find »,.
A first approximate value is calculated from the formula for a vacuum

g2 .
T 2cos?p (xtanp—y)’

or better, it is estimated with the help of a range table; thence a first approxi-
mate value is known of «g, and also of B, as x is given.

Further a closer value of #, is given by equation (1), in which y is given.

The calculation is to be repeated with this value of v,; and in this way a still
closer value is obtained of w,; still it would be useless to repeat this very often,
as the whole calculation is merely an approzimation method.

’v()“

(¢) Given ¢, vy, and the target (zy), to find ¢ (in flat trajectories and curved
fire).
A first approximate value of ¢ is given by the equation for a vacuum;

avy cos ¢

thence cos ¢ is known, and a, and so also kg= ,as well as B, Then from

equation (1) in which cos? ¢ is replaced by ﬁ’t‘lj,T%-) , the double value of tan ¢

can be calculated. The calculation is then to be repeated, when necessary, so as
to proceed from this value of ¢ to a second approximation.

C. . 10
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(d) Given a target (xy), ¢ and angle of impact 8; to find ¢ and #.
Approximate solutions for ¢ and v, are found from the vacuum equations
. __ gat _ _ g% . .

y—xtanp Tot oot b’ and tan é=tan ¢ TE oot ¢ (two equations with two
unknowns %, and ¢); thence the first approximate values are obtained of «,,
B and J; thence corresponding to equations (1) and (2) in which 2, g, 6, B, J
are known, the two unknown quantities »; and ¢ are to be calculated.

This caleulation is to be repeated with the values of », and ¢ so found.

Numerical example. Given 2R=01895 m; ¢=45°, P=2937 kg; §=1208;
i=1; X=225m (for y=0); to find v, and further 6,, v,, 7. Then

¢=0000254; a=¢(45) : tan 45=1-1478;
caX=0000254 x 11478 x 225 =0065.

In a vacuum

_ gX _ /981x225

W=,/ 53 5= \/ 1 =46-98 m/sec,
_avycosp  11478x46:98 xcos 45

thence ko= p = 55 — =0'0875;

and the Tables of Didion give B=1024, J=10375, D=10355, V;=10555.
Thence a closer value of v, is obtained from equation (1), where x=X=225,
and y=0.
‘We have, thus, 2v,2 cos? 45 tan 45=225 x9-81 x1-024 ; and so vy=475.
Further, with =%,

tan 6, = tan 45 _ 8L X 226x1°0375

(475 cos?45 ’ 0e= — 45750,
__wpcos¢p  47-5cosdd . ..
Ye= ¥, cos 6, 10555 x cos 96_45 65
XD 225 x 1.0355=6'94.

T=1;0 cos ¢ = 475 xcos 45

Therefore, vy,=47"5 m/sec, ,= — 45° 50', »,=45'6 m/sec, T=694 sec,

§ 25. Bernoulli-Didion Approximation Method for the
Monomial Law ¢f(v) = cv™.

On the law of retardation due to air resistance ¢f(v) = cv™ (which
becomes the quadratic law for n=2, eubic for n =3, biquadratic for
n=4, and so on) the solution can be carried out in a manner similar
to that of Didion (§ 24). '

The procedure in that case was, from the approximate equa-

. 1 udu . . . .
tion dog=— — y,_u’ in which % = arcos 8, to obtain a relation between
acf(u)
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vcos § and z, and then to employ it in the equations

dz de gdz

dt = vcos §’ and costd -  (vcos Oy

The corresponding formulac present no difficulty in the present
case, and we may take the example of the biquadratic law, ¢f(v) = cv*:

uduy di 1 _1_

or since u = avco$ 0, 1, = av,cos ¢,

vcos 8 =v,co8 ¢ (1+2catv2costp.x) "},

dz 1 .

we have dit= 0050~ moos V(1 + 2cay? cos® ¢ . z) du,
1
ﬂ-nd = m [(1 + 20“3'002 c052 ¢ . w)& -_— 1]-
Further
do 2
ity c‘((])s’ 3 (1 4+ 2ca*v?cos® ¢ . z) dz,
tan § — tan ¢ =— vO’ c.?)sﬂ 3 (z + ca’vy? cos? . 2?);

and since tan 6 = (-ig,

dz

Yy=x tan 4) - 1)‘,20%24)-(%{”2 + %Casi)oz cos® ¢ . SL")

Statement of Formulae.

gz

y=x'ﬁan¢—m3, .................. (1)

= 9% 2

tan @ =tan ¢ w cos*¢J’ .................. (2)

wvcos @ =v,co8 ¢ Tlf, ..................... 3)

&
t= Trgos g D T (4)
in which the functions B, J, V, D have the following values:-
10—2
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|
Retardation |
due to air « ¢f (v)=cr? cvd cot ¢f (v) =cv* in general
resistance
2n-2 9
=2 n—2
e—z-1 . (A+2)" " - —— 21
B= —gzz 1+3%z+322 141z :
n(n‘ ) a
(n—2¢
L
e—1 (1+Z)n_2—1
J= 1+z+32° 144z
z
L
n—
7, iz ¥ 1
V= e 14z (1+2) (1+2)n—2
n-1
-2
_D= e%z—l 1+%’z (1 +Z)§_’1 <l+z)"’ -1
e SO A P nel,
n—2
with the 2= 9az z=ca’v, Z=2ca3'?‘)02 z=¢a""1(n—2)
abbreviation xcosgpx | x costopux x (vycos )2z

Various transformations of the Bernoulli-Didion
Approximate Solution, specially for the Quadratic and
the Cubic Laws of Air Resistance.

A. In the case of the quadratic law (retardation cf(v) = cv?),

= 97
y=x tan qb 21}02 cos? ¢ B(Z),
= -9 _
tan @ = tan ¢ 0T J(2),
_yeosp @ -
veos 8= OR t= %cos &b D(z),

where z=2caz. For the point of fall (z=X, y=0), let 2caX =2Z;
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and at this point, from the first equation M, denoted by
W, = XB(Z). 7
Further, let the function Z(z) be introduced in place of J(z),
so that 2J =B (1 + E); E(z) is thus the function
2/-B_e(z—1)+1
B T e—z-1
Therefore the second equation assumes the form

_ _gzB(1+ E) zB(2)[1 + E(2)])
tan § = tan ¢ T =tan¢ {1 — Tf
At the point of descent, with 2=2, 8 =6,=— o (o the acute angle of
descent) we have tan w = E(Z) tan ¢.
Besides the function D(z) another function ©(z) may further be

D: 3z _
defined, through the equation D=4/(B®),and so ® = = Qez(e o 11) ;
and then for any point on the tragectory

- g VB@ ()]
and for the point of descent
X
— i3 D) = o VIB(2) O(2)

Sy |

Finally, at the vertex of the trajectory (with € =0, tan8=0;
& =1, Y=Y, 2 =2, = 2cax,) the second of the above equations takes
the following form :

= tan ¢ — J(2), or XB(Z)=2z,J(z,).

2 052 ¢
Another relation follows for the vertex-abscissa, because the
equation for tan # may be written in the form
_9 ¢-1
vicos’p 2ca
Here ¢ —1 = V?—1, since V=¢%?; so that at § =0,
v?sin 2¢
29
and since W = XB(Z), and Z = 2caX, this assumes the form
V2(2,)=1+3W.2c2=1+3ZB(2).

tan f =tan ¢ —

2ca=es—1=V2(z)—1;
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Statement of the formulae.

For any pownt-(zy) of the trajectory :

y=wtan¢-—2v-o;q€m;z—3(z)=xtan¢ [1 —;—g%l],...(l)

2).
_ zB (2) }
tan 6 = tan ¢ — mJ(z)—tanqb{l - YL+ EE)
for the inclination of the tangent to the trajectory. ............... 2)

veos @ = °V(zs)¢ for the horizontal velocity »cos 6....(3)

t= b C'ZS. 3 D)= 7 cos ¢ V[ B (2) © (2)] for the time of flight ¢. (4)

2= 2008 ciiiiiiiiiiiii e, «(5)
For the point of descent :

v,2sin 2¢
"X =B(Z) ...(6)

200 T = 2cav—"2—SI‘qn—%§ —ZB(Z), or

with Z= 2caX.
tan w = — tan 8, =tan ¢ E (Z), or tanw_v qu(Z) tan ¢

for the acute angle of descent @...........oociiiiiiiiiiiniiian... )

U, COS ¢ .
Ve = (T @ for the final velocity v,....(8)

T= X D(Z)= ,\/ [2X tanqS@(Z)] for the total time - of

v, €0S ¢
FHght Toiiniii o
For the vertex: .
XB(Z)=2a,J (2), or 200 =22, J (25) .ervvnnnn (10)
V(z) =1+ caB =1+ 1ZB (Z) for z,= 2cax,, and thence the vertex
abscissa Ly, .oovenens PP OPPRRN 11y,
Ys = &5 tan ¢ — —2—52—:;—82—5 B (z,) for the vertex ordinate 7. ...(12)
v = v°; (()S;ﬁ for the vertex velocity v5. ......... (13)
8

;= D (z,), for the time of flight ¢, to the vertex. (14) :

¥, COS ¢>
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Here v, =1nitial velocity in m/sec; ¢=angle of departure;

X = range in metres for y=0; a= % (see Vol. 1v, Table 10 for £),
0+
£(°)
tan 0 -;
L_E@)—EO)  _Rmgid
tan — tan 6’ 1-206 P
where 2R = calibre of shell in m, P =weight of shell in kg, §=air
density on the day in question in kg/m? ¢=1 for elongated shell
with ogival point of 2 calibre radius (compare also § 13); the factor
0-014 holds good for velocities below the normal velocity of sound;
a factor 0039 (instead of 0:014) holds for v between 550 and 420
m/sec; sometimes a mean value of the factor is taken ; but it is safer
to calculate the trajectory in several parts, and to vary the numerical

factor (compare § 29 and see pp. 48, 51, 52 for the factor K): B, J,
V, D, E, ©® are the functions as follows,

or more exactly a= , and more exactly still

x 0014,

e—1
Z

B(2) =6°-;_;—1 (Vol. 1v, Table 6b), J (2) = (Vol. 1v, Table 6 ¢),

3z _
V(z) =& (Vol. 1v, Table 6 a), D () = . ! (Vol. 1v, Table 6 0),

#(z=1)+1 2 (¥ — 1)
e—z—-1" e—z—1
(for corresponding Tables for £ (z) and © (2), as well as for z B(z),

consult Heydenreich, Lehre vom Schuss, Berlin 1908, Vol. 11, pp. 130
—131).

Procedure in the solution of individual examples: (1) Given v, ¢, X, R, P, 3;
2% sin 2¢b
gX
thence Z from (6), and with it e= QTZf" and consequently 7. Then z, follows from

(11) and with it x,, and then y, from (12), v, from (13), ¢, from (14). Further o
from (7), then v, from (8), 7' from (9). Since 7 has been calculated, the value of
z is given for any given &, and then y from (1), 8 from (2), v from (3) and ¢
from (4).

E(2)= B()=

to determine ¢, v, T, w, Ls, ¥s, ¥, and y for any given z. Calculate anda,

(2) Given ¢, ¢, vy; to determine the remaining quantities. With the first

approximation a=53:(ni)% , and for any given z, the value of z is given by (5), and

then y, 6, v, ¢ from (1), (2), (3), (4).
Next from (6) the Table for ZB (Z) gives the value of Z and thence of X, as
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well as o from (7). With this value of » the value of a can be calculated more

accurately, and then the remaining calculations are to be repeated. !
Thus v, follows from (8), 7 from (9), z, and with it z, from (11); and

80 on.

(3) Given ¢, vy, X; to determine ¢ (as for instance in the calculation of the
error of departure) ; also the remaining quantities.

The value of ¢ is calculated either from the formula corresponding to a
vacuum, or else from a Range Table; and then the first approximate value of a
is calculated.

Thence Z=2¢aX, and from it the second approximation to ¢ from (6) and o
from (7). Then a can be found more accurately, and the calculation repeated.

Then v, is given from (8), and 7" from (9), &c.

(4) Given ¢, ¢, 2 and » cos 6, to determine v.
Caleulate a, and then z and V(z); then v, follows from (3).

(5) Given R, P, 8, as well as X, ¢, T'; to determine 7, v, v,, », &e.

Since 7, X, ¢ are given, ©(Z) follows from (9) and thence Z; c=£j, and

thence % is found. .

Afterwards v, is determined, for instance, from wy= T_‘2£T¢
v, from (8), &c.

The above solution applies especially to cases, where the initial velocity v, of
the shell is less than 300 m/sec ; on the degree of the accuracy, consult § 33.

Besides the original functions B, J, V, D, and the functions E, © and 2B (z), it
is evident that others may be introduced into the system of equations.

N. v. Wuich has prepared Tables for practical use. The method introduced
by Heydenreich in his Lekre vom Schuss, Berlin, 1908, 11. p. 122 is identical with
the above.

, @ from (7),

B. Siacei’s “Factors of Fire” are given in Vol. 1v, Table 11,
and are to be used for similar purposes.
This table contains for the different values of Z the values of

72s8in 2¢ tan o T %eos Ys

gX ' tan¢’ J(Xtan¢) w.cosw’ X’ X tang’
872X (2R)> 1000 and 8701000 (2R)? v sin 2¢b
1206P Y TTT206P g

these expressions are denoted respectively by £, £i, fe, ..., fr; they -
are called the “ Factors of Fire.”

The tables are to be used as follows:

Given P, R, 8, 1, as well 'as X and ¢.

Proceed from the given f;; look out on the horizontal line, ie., for
the given value of Z, the corresponding numerical values of £, £, f;, '
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Jor Jo fs. Then v, is given by f, w by f;, T by fi, v. by £, 2, by fo, ¥,
by fi.

Given v, X, ¢.

Start from f, and look out the corresponding f;, f,, .... Then f,
gives w, f; gives T, and so on.

Ezplanation of the Tables.
According to the above,

”"z;‘; 2 _ B(2), denoted by ,
:22;=E(Z)—?B‘I((Z7))— 1, denoted by f;,
J(X tan ¢y tan & \/ 7 ,J[DB((ZZ))] ,\/ [’3‘ e(Z )]» denoted by fy,
= V( 75> denoted by L

V2(z,)=1+3ZB(Z);
to every given Z a definite 2z, corresponds, so that there is a definite Z.’ or, a

's definite =2 \, ; and this is f;. Further,

y= xtantp[l ?ggz/))

and at the vertex y=y, and x=x,; and so, after division by tan ¢ and X,
B e 10
1 Ytang X X B(Z) |
‘ But here z, is a definite function of Z, and so B(z,) is given as well as Z'; and 2 1, =f;

is a given function of Z, and ¥ ty Y is also known ; and Z=2ca.X, so that f; is
given by Z, and in consequence of £, f; is given also in terms of Z.

The “Factors of Fire,” f, f1, ..., and their calculation in terms of Z, where
Z=2caX, may be stated as follows:
v sin 2¢p

f="73x

g tanw 27 (Z)
g A=tang™ (Z)—B(Z) L
Z

=B(Z),

= govp =N - w50

¥ COS ¢
¥, COS @

fa= =V(2),

L
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154 Second group of [cH. Vv

Ty 2
h=x=7
fi= Ys 1-% B (z,)
“Xtang X X' B2 7Y
_ 87aX (2R)21000
Jo=—"Tg06p °
[ 871000 (2R)? v,? sin 24)
=T 1206P g

In this way for every value of Z the corresponding value can be calculated of
£ /15 f25 ... This calculation is extended in Table 11. It is seen that £ is merely

the former function B (2) of Table 64, f; the function —— V @ of Table 6, and that.
with £; and f5, the functions £(2) and © (2) are given in a tabular form.

C. TFor the cubic law of air resistance the corresponding table
of Factors of Fire has been constructed by F. Chapel.
This table is equivalent to the system of formulae constructed by

Fr. v. Zedlitz in 1896, independently of Chapel, based on the cubic
law.

When the retardation due to air resistance is taken as ¢v?,

g°
y=atand—g v e

(1+32 +42)
where z = ca’ v, cos ¢,

-tan@:tan¢ m(1+z+§z)

Y, COS ¢
1+z2

= % cos¢( +42)

Substituting 1+3z=g,or z=2(¢—1)

vcos =

2

2 1+ 2¢°
we have y=axtan ¢ — 2%2‘%082 $ 3 7,

. 2
tan 8 = tan ¢ — gz 1-2¢+4qg

,? COS* b 3 ’
vcose_vocosqb’ =tvocos<;b.
2¢—1 x

Here ¢ is a parameter, which varies along the trajectory; at the
end, where y=0, 2=X, v=1,, §=— o, t =T, the value of ¢ may be
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denoted by ¢,; and then
gX 14 2¢2

sin 2¢ = W TG e (4]
tan = 2%;(/;352 P 1- 4q§+ 095 . T
n=" z:sm"’ ﬁ ................. (I11)

= v,,i{)qs% ................................. avy

The construction of a Range Table will proceed then in the
following manner: For various ranges X the angle of departure will
be found by experiment, and the initial velocity v, will be known as
well. The corrections for wind, air density and so forth will be
carried out; and then from the three values of vy, ¢, X and by the
help of (I) a definite ¢, will be determined. The collection of
ge.-values is then shown graphically as a function of X.

On this curve the values of ¢, will be shown corresponding to
values of X, say, to X = 100, 200, 300, ... metres.

For every value of g, the angle of departure ¢ will be calculated
by (I), the acute angle of descent w by (II), the final velocity v, from
(IIT) and the time of flight 7 from (IV).

The following remarks on this system of solutions were made by
Fr. v. Zedlitz, to prove that, in spite of a difference of form, it is
identical with Chapel’s Table of “ Factors of Fire”: therefore it is
not included among the Tables of Vol. 1v.

The system of equations (I) to (IV) shows that the “Factors of
Fire” '
vsin2¢ tanw wv,cosw T cos ¢
"X tan¢’ wvcose’ X
are definite functions of ¢, or 1 +4Z, and so of Z=ca’Xv,cos ¢; they
can be calculated in consequence as functions of Z, and given in a
tabular form.

Suppose Tv°§)s—¢ to be divided by vo’s§ 24), it will be seen

that

?1 is a given function of Z. So also is the expression
% 810 ¢

% . . . .
Y tan L2 1
Ytan é where ¥, is the ordinate of the trajectory for the abscissa
r=3X.
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156 Second group of [cH.V ‘
We know that

22 14+ 2¢°
y=wtan $— 21)0290052 ¢ 3 7
gX* 1422

and pn=%4Xtand — Sicor s 3

from which we have

X
q1=1+%zl=1+1}ca2§vocos¢.

But ¢,=1 + }ca?Xw, cos ¢, so that ¢, =1+3(g.—1): and so ¢, is
also a function of g,. Now

=1 - gX 1+ 2g;®
H=iXtan ¢ l:l 2u7sin2¢ 3 ’

. v,2sin 2
and since ¢, and - ¢

X
. . . k)
quantity in the bracket is a function of Z, and Xtang also.
These “ Factors of Fire ”

are given functions of g,, and so of Z, the

%isin2¢ tanew v.cosw T %
X ’ tan¢’ wecosd’ wsing’ Xtang’

" are those given by Chapel in his Table; and we see now the intimate
connexion with the system of equations introduced by Fr. v. Zedlitz.
Ronca has shown this in another way.

§ 26. Approximate solution of F. Siacci, 1880
(*“ Siacei I7).

As opposed to Didion’s procedure, Siacei introduced the following
modifications, which depend less on methods of mathematical inte-
gration.

In the first place, following N. Mayevski (1872), and the proposal .
of St Robert (1872), he chose as independent variable in his method
of solution the horizontal velocity multiplied by Didion’s correction
factor a, (= av cos 8), instead of the abscissa of the trajectory; or,

. 1. .
in other words, he chose o=y = S n the general system of solutions

of § 23.
Secondly, in the place of Didion’s law of air resistance, Mayevski’s
Zones are employed. ‘
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The retardation duc to the air resistance, that is the air resist-

ance divided by the mass of the shell, being ¢/ (v), the constant
(2Ry & x 1000
TP x1206

(2R the calibre in m; & the air density in kg/m?®; P the weight of the
shell in kg; ¢ the form coefficient, where ¢ =1 for ogival shell, rounded
to a radius of 2 calibres, and n=1000¢ is the so-called “form
value”): then for

700 > v > 419 (m/sec), f(v) = (Ié%g” o,
419>v>375 _O—(mg%ﬂw
35>v>295 ., =°'—°:gol—0”9v°,
00583
205>0>240 , , =— oy,
- _ 0014 7g ,
V2 240 » » —w v
Thence we have:
1
= (D= Dughycovvcvenernrenineissenessnisneennns (1)
an@—tanqb——(J P (2)

za/A,—A \
y=xtan¢:— %(ﬁ_J"o}
u g

1
=gztan ¢ ~5g [Au— Ay, — Jyy (Du— D)), ...(3)

1.,
t= P T L R PN “)
U=avcos @, Uy=auyCOS . .ivreiuinieieiiiininennns (5)

¢ the angle of departure, v, the initial velocity; (z, y) coordinates of
_the end of an arc of the trajectory, 6 the slope of the tangent, v the
velocity of the shell at this pomt t the time of flight to reach this

point;
du du du Jy udu
Du o s -2 f = - _,Au=_ _“__’
ey 7= W gy T @
and the values of D, J, T, A are calculated in Tables by Siacei,
Braccialini, Klussmann, and others.
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As to the calculation of the integrals D, J, T, 4, it is seen in the
first place that in the expressions for @, 6, ¢, these functions occur
only in their difference values, calculated from some initial condition,
as Dy — Dy, Ju— Ju,, and so on, so that arbitrary numerical constants
may be introduced.

The same is true for 4, since y is obtained from tan 6 by inte-
gration with respect to u; in the passage between the zones it is
necessary to preserve continuity.

The calculation is carried out in the following manner:

(a) First zone: v between 700 and 419 m/sec: f(v)= qv*,

where q= (%369%)12
D(uy=— % =— % uui:a == % log u + an arbitrary constant @,
du 2¢9 [du

J(u)-“—‘—?g uf(’ll)——zlg E§=+qg_’£?2+ » » Ql)
du 1fdu 1

T(u)=— ‘f—(—{L—)'=—§ ?=q—u + ) » ” Qz’

J (w) udu wdu du _ @ [du
400=- f()u) N f(qzﬁ Q‘) @ g ; IJ
=3 q% 5= Q‘ log u + an arbitrary constant Q.

The constants Q, v, ., Q; are arbitrary. Siacci takes @, = 0, and
Q, Qs, Q; such that the tables for D (u), T (u), A (u) begin at zero for
u="700.

(b) Second zone: v between 419 and 375 m/sec: f(v)=pv,

000009404 g
= 4000
Dw)y=- z—"@ udu = + an arbitrary constant C,
\ f(u) s y
_ du 2 du 2g .
J(u) =—2 fuf(u) - ? =4 3pus + 3 » Cl >
and so on.

. The constants C, C,, C,, C; are to be determined, so as to make the
initial value of a function at the beginning of the second zone the
same as the final value at the end of the first zone. Thus, for

instance, € 1s such that, when % =419, — % logu+ @ =plu + C": and so
forth. )
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The solution of the separate trajectorics by means of the system
of equations (1) to (5), is as follows: Suppose, for example, v,, ¢, ¢,
given, and for given z the values of y, v, t, & are to be determined ;
then from (1), in which =, v,, ¢, ¢, as well as 4, and « are known, D (u)
and » are caleulated : the other Tables determine the corresponding
values of J(u), 4 (u), T (u): then € is obtained from (2): and from
it the value of a is corrected and the calculation of 8 repeated; then
y is found from (3), ¢ from (4), and v from (5).

On the other hand the calculation of the elements X, »,, w, T of
the point, of descent from the same data v,, ¢, ¢, requires more work.
From (3), at the point of descent, (y =0, z = X), we have
& (Au,— A“o .

2 (u,,e -D,, ‘I"") ’

and here, by successive trials, %, = av, cos @ is determined : thence it

0=tan¢—

follows from (1) X = 'alt—c(D"‘ —D,,): and then tan o from (2). Then

a closer value of a is determined, and the whole calculation is re-
peated. .
The problem of greatest importance in the range table calculation,
(viz., from given v, ¢, X, P, R and §, but with 7 unknown, and also
¢ unknown, to calculate the elements v, w, T’ of the point of descent),
1s not easy to carry out, because successive approximation by trial
and error is required.

On this account Siacci proposed to construct other functions and
tables, in addition to the primary functions D, J, T, A, with a view
to lessening the labour in the solution of these problems.

Secondary functions K, N, @, 0, 8, §' and the
corresponding tables.

When equation (1), D (u) =acz+ D (u,) is solved for the deter-
mination of u, we see that u is a function of acr and u,; and

] Au—4A .
also Jy—Ju,, Au— Ay, Tu—Tu, and ﬁ“—_—D—::—Juo, are given

functions of aca and u,.

The following abbreviations are introduced in the use of these
functions:

TymTug= 8 JumJug= Qs 2Tt

D,=D,,u=t
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160 Second group of [cH. v

Another function, dependent on acx and w,, is further %: N;
S ,
also @ — E= 0, and finally von = S.

These functions, K, N, Q, S, §, O, are called secondary functions ;
the corresponding tables are easily constructed by the help of the
original values of D, J, 4 and T.

Therefore
D (w)y=acz + D (u,),

tan 6 = tan ¢ — ;—c Q(caz, u,),
y=atan ¢ — 5 E(car, w),

1
t=; S (caxz, u,),
u=avcos 8, u,=ay,cos .

At the vertex, u=wu; = avy, x =2, y =y,, =0, and so

D (us)= aca, + D(w), tan ¢= o Q(oaz,, us),

Yo = &; tan ¢ — ;—‘%’ E(caxry,uy), t,= % S (caxs, up).

At the point of descent, y=0,2=X, u =y, =av,cos 0, 6 =— w;
and so
D (u,) = acX + D (u,),

tan = -2a—c Q (caX, uy) — tan ¢,

tan ¢ = - B (caX,u), T = S (eaX, )3

and also
2
tan w = 2% O(caX,u,), tang=X % N (caX, u,),

T=aX 8 (caX, uy).

For instance, if the range X, the angle of departure ¢, and the
initial velocity v, are given, and ¢ is to be determined (or the form
coefficient ¢ with given R, P, 8), the most convenient equation to
employ would be tan ¢ = § o> X N.

Here X, ¢, v, are known, and a and u,; therefore N can be cal-
culated, and from the N table in the column of given u, the value
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of caX can be found, and so ¢ is known. Then o is found from
a
tan o = 5 0.
Taking this value of w, a closer value of a can be determinced,
and the calculation repeated with greater acecuracy. This example
will show the advantages of the secondary tables.

§ 27. The approximate solution of Krupp-Gross (employed
earlier by F. Krupp).

In this procedure the correction factor a of Didion and Siacei I
is put =1,and so u=av cos § =v cos 8, u, = v, cos ¢ : and u represents
simply the horizontal component of the velocity of the shell.

In other words this approximation in the integration of the Chief
Equation consists in replacing ¢f (v)cos 8 by cf (v cos8) = cf (u):
it is assumed then that the horizontal component of the air resist-
ance, mcf (v) cos §, for'any velocity, is the same as the air resistance
mcf(vcosd) for the horizontal component of the corresponding
velocity of the shell.

Moreover no analytical function is assumed for the retardation
¢f (v) of the air resistance, but the value is taken from Krupp's ex-
perimental tables, which arc based on experiments.

These tables eontain the following :

Rndi
P.1206
weight of the shell in kg; 8 the air density in kg/m?: ¢ the coefficient
of shape of point, ¢ =1 for ogival shell of the early Krupp normal
form, viz. with a rounding of 2 calibre radius for the ogival point).

Then ¢f (v) = ag f (v) is the retardation due to the air resistance,

Put =a (2R the calibre' of the shell in em; P the

and so 15) ¢f (v) = Pa f(v) is the actual air resistance to the shell, with

_ its long axis in the tangent of the path: ¢f(u) or ¢f (v;) is taken as
the horizontal component of the retardation, or according to Krupp,
it is the retardation due to the horizontal component of the shell.

For every velocity u or v cos 8, from u =1000 to u = 50 m/sec,
the values are given of:

1. f(u):
1 u

AOL denoted by Az,

Digitized by Microsoft ®
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v 1 u
3. 2 1 % denoted by D' (u
9f @’ y D),

6 1000
Couf(w)
1. Emou @)’ denoted by J (u),

8. J'(u)Axz, or J'(u)éf%,

9. 2?000 J'(u) Az = 2 I (@) —;-.?Z") , denoted by 47¢2).

The system Siacci I consisted of the following equations, in which

.5
the factor ¢ occurs, where c=(2R) &.1000 and ¢f(v) is the re-

tardation :
do=— &15;% . ]: }1(‘5;‘ o Pe= D
where D, = ——]%E’ %= avcos d;
tanG————ta ¢—~f :}gj)u n¢—§c(Ju—Juo),
where Ju =f—l—32(3—;0;

—udu

dy = dxtan ¢ — 20[ 30 Juod$]§

st g =g [ 0755 I TG ]

1
=xztan ¢ — é@[Au ~ Ay — Juy (D = Do),
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—udu
where ) Au—fJ( ) e
1 —du
=3 w @ (I' Tu,), where T, _.[f(u)

When we put a=1, and introduce the notation of Krupp, where

_ R*m(incm?) Bzg
~ P (inkg)1:206
, udu J’
D=7 Tw=[r =i
s J (wyudu
4 (u)_f 9f '
then we have
doe = —%—% where 4 =vcos 0, or dx=—£;}—d(uu—),
1 —udu 1, ,
W77 ~a e D
d U
Ei‘—/ tan 6 = tan ¢ — u,ufo(lu) =tan ¢ — ( = u)
=J (wudu +E 0
y=aztan ¢ — w9 @ +, J” (%)
=g [tan ¢ + J (uo):l (%(A'u _ A,‘uo),
1 — du 1 ’ U
w7 "o e T

u=wvcos 8, u,=1v,cos ¢.

The integrals arising here, D'y — D'y, J'u—J uy A'u— Ay,
Ty — Ty, were calculated approximately by Krupp, by summation
of the corresponding values from = 1000 m/sec, downwards; and he

assumes, for instance, Au = —1 m/sec, and calculates
* —udu “ 4+1.u u He u
D,-D, orf L Lt L .
N ) w9 () 1000 9.1 (1) 1009 (%)
Thus —e— is calculated for every value of the horizontal
9 (w)

velocity u, from 1 =1000 downwards, and each value added to the
sum of the preceding values, starting from the beginning of the
Table; the successive sums are the values of IV,,.

112
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164 Second group of [cH.V

The corresponding values of 1", J’y, A’y, are obtained by a finite
summation of the small finite differences. This procedure recalls in
many respects the methods of calculation long employed in the
insurance offices, where a similar method for the establishment of
death probability by an integration of finite summations from one
year of life to another, is employed.

Formaudae.

For any given point (zy):

&= %(D’u —-Dy,), u=v cos 0, wy=rvyc08¢h, ......... 1
1, 1,
tan0=tan¢+aJuu—(—LJu, ................................. @
1 ’ 1 ’ 4
y=w<tan¢+a¢fun>—&—Q(Au—Auo), .................. 3)
1 s !
t=E(1’u-—TuG) .............................................. 4)

For the point of descent, x =X, u= u, =, cos w, t=T, 0=—w,

y=0:

=- (D'u, —D'yy) e, (3)
. 1 7 ]- 2
tanw:—(tan¢+ aJ,,o) 2 Ty were(B)
J’{l ’ ’
(ta.n ¢+ ) O Ay L SR (7)
1 ’ _} A,ug “A'uo
tan ¢ + o Sy = o Dy Dy, e (7a)
ot O/ SO 7 RO (8)
Uy
e g e e 9)
At the vertex, 2=, Y=, 0=0, v =, =v,c08 0 = v, t =1:
Juyy=atand+J 'y, cevrviiiiniiiin (10)
1, .
my= O T (11)
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1 7 1 ’ ’
=20 T = 5 (A= A, o rerere(12)
1 ’ ’ s ’ ?
or ya=a[=[ e (D'uy — ug) = (A'y,— A'4,)}), ...(12a)
1 mnt 4
R TR 70 A (13)

The notation is: (z, y) the coordinates of any point where the
velocity is » m/sec, slope of tangent 8, time of flight ¢sec, (z,, ) the
coordinates of the vertex, where the velocity is v,, time of flight ¢,;
(X, 0) the coordinates of the point of descent, at an acute angle of
descent o, total time of flight 7', final velocity »,. Further v, is the

Reqrde
P.1206’
section of the shell in cm?; P the weight of the shell in kg; 8 the air
density in kg/m?; D'y, J'y, 7"y, A’y the corresponding tabular values

initial velocity, ¢ the angle of departure, a = R the cross

(Krupp Tables, Vol.1v, No. 8); air resistance in kg =€ cf(v) = Paf(v),
and f(v) given in the Table from »=1000 to u = 50 m/sec;

, *  —ydu —du —du
Du=f — T,u=f —7 J,u=f T\
10009, (%) 10009.f () 1000 f (%)
ar =" TS wudu
wo 9./ (%)
1. Numerical example. Given 2R=24 cm, P=215 kg, =089, F%O—B=lm5’
2 =609 m/sec, p=20°, X=12810m :
(2) To determine the final horizontal velocity u,=v,cosw. We find
(1;=0'5313, Ug="vy €08 h=572"3, a X=24109;
with %=5723, the Table gives IV, =15956; and so, from (5),

b, =24109 415956 = 40065,
and then ¥,=v,cos @ =280"8.

() To determine the time of flight 7'; from the Table
7", =2117, T', =864,
and so, from (8), T=05313 (86:14 — 21°17) =34'52 sec.
(According to Krupp’s measurement, 7'=3423 sec.)
(¢) To determine w the angle of descent :
J,,=02829, J, =2:0792, tan$=0'3640,
and so, from (6), tan w=0'5904, ©=30°34.
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(@) To determine v,, Xy, &, ¥,, at the vertex:
. 03640

From (10), L= 05313 " 02829 =09680,
%y, =v,=351"6 m/sec.

From (11), 2£,="T058 m,

from (13), t,=16'02 sec;

and further, A'u’= 9387, 4, =1838,

and so from (12), Y,=1498 m.

2. Example. Application to the calculation of the muzzle velocity vy, when
the velocity of the shell has been measured near the muzzle, by screens and the
Boulengé chronograph.

Suppose, for example, the velocity has been measured at 50 m from the
muzzle and found to be v5=544 m/sec.

That is, the horizontal projection of the velocity, measured between two
parallel vertical screens, is

v 008 =v5=544.

Further, take

8=1206 kg/m? i=1, R%r:P=4"76cm?kg.
Then from équation (1),
D' (vg cos ) =DV (v5) — 50a,
2 2y 87
et
500=238, v;=044, D' (v5)=17277,
D (wycos ¢p)=17277 — 238 =17039,
voco8 p=>549.
Assume an angle ¢=8° in the experiment, then
vp=549 sec 8°="554 m/sec.

For such problems, which frequently occur in practice, the Krupp tables are
of great use.

where

Gross has given a table, for different values of u, and u, for the

L Ay — Ay,
expression - ——
P D, ~TD,

0
of 1, can be calculated by (7a).

Finally W. Olsson has calculated a convenient table, in which the
values of v, cos o, T, X, o, for @ =1, are given for different values of
¢ and v,cos ¢.

= F, from which, for given u, and E, the value
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§ 28. Methods of solution of Siacci 1888 (Siacei II)
and 1896 (Siacci III).

In respect to the methods of integration, we here have (sec §23),
o =cos ¢, y= B cos?p, where ¢ is the angle of departure and Bisa
certain correction factor to be described more closely later, but deter-
mined like Didion’s factor a, to smooth out the errors arising in the
integration.

The system of solution is the following:

1

xz= % (Du - -Duo)»
1
tan 6 = tan ¢ — 3B oo d (Ju~Jup)
1
y=ztan ¢ — 2B cost B [Aw— Aug = Juo (Du~ Dy},
1
t= c-‘—ﬁm (.[1“— T"‘o)’
) = 2808 0 g =1,; retardation cf(v); B a tabular value.

T cos¢’

For the determination of the air resistance as depending on the
velocity, Siacei 1888 chose the zone laws:

retardation =¢,v% for v="700 to 420m/sec
» =cy® ,, v=420 ,, 343 , _
. =, v=343 , 282
» =cgv?, ,, v=282 , 240 ,
’ =¢?%, , =240 m/sec downwards.

The corresponding tables were calculated by Berardinelli, from
u="700; later by von Mola to u=983; secondary functions were
calculated by Braccialini.

Similar primary and secondary tables, but with somewhat dif-
ferent division into zones (viz., with those of Mayevski-Sabudski), are
to be found in the work of von Heydenreich, Die Lehre vom Schuss,
Berlin 1908, Part II, to which reference should be made.

Siacei’s procedure of 1896 (Siacci IIT) differs from Siacei II
merely in being based on other laws of air resistance: here also
Siacci has recalculated the primary Tables D, J, T, 4, as well as a
Table of B.
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The factor of correction B of Sitacci 11 and I11.

The point of difficulty in the solution lies obviously in the
factor 8.
The exact Chief Equation was

vcose)

dd g d(veosb) g (cosgb

cosf cuvf(v)cost@ ¢ vcosf . fvcosB
cos¢f(cos¢)( 56)

in which ¢ depends among other things on the air density, and is
variable in fact with the height y of the shell above the ground;
this may be represented by the suffix y in ¢,.

The approximate Chief Equation is

vcos @
ag g d(cos¢)
cos*0  cyucosl _ (vcosO R
f( )Bcos ¢

cos ¢ cos ¢
and here ¢ is provided with the suffix 0, to denote that the ¢, really
variable, may be represented approximately by its value at the

height of the muzzle of the gun, Introducing u = WCEZS:,
mation consists in putting ¢, /' (v) cos & = ~ ¢, f (w) B cos* ¢. So that
since

the approxi-

ey __ f(v)cosd
Co f (v cos b’) cos?

cos ¢

on the quadratic law for instance, f(v) = ¢,

' vcos veosd
o f(cos¢) (cos¢)
B has the following values:

Yok COS D

E=n

at the point of departure 0 (8= ¢), 8= = sec ¢;

ve?. 1

vs. LN\
(c S ¢> cos? ¢
inthedescending branch, where 8=~ ¢, 8=

at the vertex S, (8=0),8= =1;

? cos (— ¢)

EIEy

=sec ¢.
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§ 28] numerical methods of approximation 169

So that in these cases, 8 is always Z 1, and differs less from 1
as ¢ is smaller. ,

On the cubic law, the corresponding values of 8 in the series are
sec ¢, cos¢p, sec ¢, and so respectively >1, <1, >1. On the bi-
quadratic law, they are sec ¢, cos? ¢, sec ¢; and so on.

For the quadratic law, ¢f (v) =c??, B is identical with Didion’s
adjusting factor a. Because in Didion’s procedure,

f (av cos 0) _ (av cos Oy
f)= acos acos 6
In Siacci IT and IIT on the other hand,
fo)= ~f(v cos 0) B cos? ¢ - (v cos 0)’ B cos* ¢ = 81t cos b,

cosgp/ cosf cosp/ cosé

= qu? cos .

and so the B is the same as a.
On Siacei’s method, we multiply equation (1) on both sides by

the factor
7 (v cos 6 (Vo cos ¢>
% <I) (tan ¢ + tan 0) do , where & =——>~ ¢/ oo 0 /.
0s?d S ) S (Vo)

Here V, denotes that initial velocity which with equal ¢ will give
the same range in a vacuum as that which was given in air;

. Vasi
that is V"S;qn%’ =2X. This gives

Co .
B <I)(tan¢+t1n 0) o5 ’6

(Vo cos 4))
_ 1 cos @
Soowd (V)
and this equation is to be integrated from 6 =+ ¢ to 6= — ¢, and so
from the origin O of the trajectory to the point O,, lying near the
point of fall on the descending branch.
In the integration on the left-hand side, a constant mean value of

, dé o
(tan ¢ + tan 6) sl )

B, as well as of ¢ and%" is to be taken outside the integral sign: this
v
mean value is to be distinguished by a suffix m; and then

B (C") j (tan ¢ + tan 9)9 6

75 COS , do
A )cos ¢'+¢ ( c0s @ )(tan¢+ban€) (8
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170 Second group of [cB. v

The integral on the left-hand side is — § tan®¢; and further it
is seen that, for ¢f (v)=cv”, the fraction ®,,=1: (and herein lies the
reason of its introduction by Siacci); Siacei then puts it equal to
unity.

On the right-hand side, the limits are inverted, and f replaced

by 2 f in this manner, as-is seen easily by the expansion of
(tan ¢ + tan 8), the concludlng formula is

B = <C1> 2 sin 2qf> 7( Vo)f Vcc?sOSG¢> (l %I%) cgsefi )

Except for the fraction (z—'“’) , this expression contains only V,
0/ m
and ¢; the integral was calculated by Siacci by approximate quad-
rature for different values of ¢ and V, cos ¢; so that, putting (?)
0’ m

aside, a Table of B can be drawn up that gives it for all possible

values of ¢ and V,cos¢ in practice; or for all possible ¢ and
. X

X, since Vy= \/—S;’gga

Siacci’s B Table gives these values.

How far this factor 8 will adjust the errors of integration, réquires:
further consideration (consult § 32, 33).

It was seen in the calculation of 8 that various quantities were
neglected, that might affect the accuracy of the complete calculation
of the trajectory.

Siacci sought to make the procedure more accurate by calculating'
with different values of 8 for =0, 1 X, X, 2X, X; and also with
different B for 2, v, ¢, 6.

Parodi has extended this method for practical purposes (see Note
no. 28).

§ 29. The approximate solution of E. Vallier, 1894.

The choice of o and «, on Vallier's method, is the same as in
Siacel IT and III. But the calculation of B is somewhat different.

Moreover a different law of air resistance is assumed: that is, in
the value of the air resistance as dependent on the velocity » of the
shell, for v > 330 m/sec the Chapel-Vallier laws have been employed;
and for v < 330, the two zone-laws of Hojel (compare § 10).
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§ 29] numerical methods of approximation 171

When the retardation due to the air resistance is represented, as
before, by ¢f(v), and c—%—)}zﬁ—l) (8, is the air density at a height v,
measured in kg/m?®; R the half calibre of the shell in emn, P weight of

shell in kg, ¢ = —1&)—0, the coefficient of form), then, as in § 10, 8; for
v Z 330 m/sec, J(@)=0125 (v — 263),
330 >+2 300 y = O'((l)12)1692 o,
v< 300 , =0033814 "

Here ¢=1 for rotating elongated shell with ogival head of semi-
angle of opening = 41°%5.

But Vallier on the other hand considers ¢ as slightly variable,
and puts

._y[v—(180 + 2v)] for vz
415 (v —263)
but for v < 330 m/sec,
7= 067, 072, 078, 110,
for y=31° 33%6, 36°9, 48°2.

The adjusting factor 8 has been calculated by Vallier very
systematically, employing the Taylor-Maclaurin expansion and the
remainder in the integral form. A finite formula for 8 is thus
obtained.

This formula is really not so simple to manage as the 8 Table of
Siacei, given in Siacei’s work, Balistique extérieure, Paris 1892, or in
the Lehre vom Schuss of Heydenreich, Berlin 1908, 11. p. 30. Vallier’s
formula is hardly suitable for tables.

On the other hand it has the advantage of greater generality; the
B Tables of Siacci and Heydenreich fail frequently with guns of great
calibre. The formula for 8 is calculated in the following manner.
Vallier starts with the Maclaurin expansion of § 22a, with the re-
mainder term in the integral form, as in equation (30) in § 22 a; and
thus )

=r
y=xtan¢—2ﬁ£’s—g¢——gﬁ=o (z—1t)? [v‘{o(:’)b],dt' ...... 1)
_ The method of approximation, employed by Vallier, as well as in
- Siacei IT and ITI, in the mtegratlon of the Chief Equation, consists
in replacing

z 330 m/sec;

R (v) 3, f(v)cos @
1206 P
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172 Second group of [cH.V

approximately by
: R2i(v,) Sof vCos 0) Bcos? P

1 2061’ ’

in which 8, and ¢(v) denote the air density and the form coefficient ¢
for the actual height y above the horizon of the muzzle; &, and 2(v,),
on the other hand, are the corresponding values at the point of de-
parture of the trajectory.

Further ¢f(v)cos @ is replaced approximately by the function
veosd

of (w), and u= o5 ¢ ; further 8, =8,(1 —0:00011y). ......... (2)
The following relatlons are contrasted:
correct :
_ g t=x of (v) cos 8
y—wtan¢ 2——%2005,_,(#—9 t=0(w t) l:m— ) £, (3)
_ R%(»)8,(1-000011y)
- 1-206 P ’
incorrect :
_ ~ . gw2 _ ft=x e -C’f(u)
y=wtan ¢ 20,2 cos® ¢ g =0 (@=1) Lv“ cos'd ﬂt’ """ (4) :
_ R*i(v,) §,8 cos* ¢
AT 1206

In this approximation, the error € in relation to the ordinate y of
the path, corresponding to the abscissa «,is thus the difference of the
two expressions in (3) and (4),

e=g ::(m— oy [cf(v) cos 6 — clf(u)} dt.

vt cost @

Let us consider the complete trajectory, in so far as it lies above
the horizontal through the muzzle.

Then z=X; and y=0 in (3), assuming that there is no error in
the employment of the function ¢f{v): on the other hand ¥ in (4) will
be different from zero. Denote then the error in the height y of the
trajectory at the end of the range by €.

Let the variable in the definite integrals be  instead of ¢; and
let the other variables remain as before, then the error is

@=gf:::iX_x)2cf(v)cose c,f(u)d

v cost @
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§ 29] numerical methods of approximation 173

The factor 8 in question occurs in ¢,: it is required then to de-
termine B so as to make this error € zero. If this could be carried
out exactly, the solution of the problem of the trajectory with this
value of 8 would be exact.

But here it is evident that other approximations must arise in a
further manipulation of the expression in (5).

Therefore a new variable is introduced, z = % , 80 that de= X dz,
(X —2p=X2(1-2°.

Vallier assumes further that it is permissible to represent the
cf (v)cos 0 —c, f(n)

" vtcos'd
denoted by ¢ (2}, and to expand it in a convergent series in ascending
powers of z, of which only the first two terms need be employed.

He assumes therefore that the curve ¢ (z) can be replaced by a
straight line, ¢ (2) = a,+ @,z (first assumption). Then

fraction as a function of # and therefore of z,

z=1 ’
(5'=9X3f (1 = 2) (ao+ @,2) dz = g X* (%’+ﬁ).
' 2=0

If =0, we have
dug+a,=0, iiiiiiiiiiiiiiiii, (6)
and this 1s the relation, from which 8 is to be calculated.
The calculation of a, and a, follows from the relations of the

trajectory at the vertex: in the first place #=0, 2=0, and here
¢ (2) = @y + ¢,z =a,; denote it by ¢ (0).

. x
Moreover Vallier assumes that zs=)—£f can be taken as constant,

." for all trajectories, and = 055 (second assumption): the corresponding

value of ¢ (2) is denoted by ¢ (s); so that ¢ (s)=a,+ 0:55a,. Thence
two equations for the determination of @, and a,. Substitute these
values in (6), and the condition becomes

6P (0)+55()=0. revevrrrrrrerereren. 7
But now
R28, ¢(v) (1 —000011y) f(v)cos & —v(v,) f(u) B cos’,¢
¢ )_1 206.P (vcos b’)“
and so
0 R28, 1(v,) f(vo) cos b — i(vy) f(vo) B cos-d:
¢ = 306 P (2 005 B’
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since u, = %,; and

b (s) = T T(0) (1= 0000115.) f (1) ~i(0,) f(u) Beos'e
1-206 P (5. 1) or ugtcos* ¢

Substitute these values of ¢(0) and ¢(s) in (7), and we have
% s .
B |:6 fE}T) +5 f——;:i ):l sec?d ¢ (2,)

=61 (%)‘7—:()%") sec*d + 57 (vs) (1 — 0'00011y,)f;)(—1f) c e (8)

This is the formula for the determination of B that was to be
constructed.

It is obvious that this value of B8 can only be employed after '
finding a first approximate value of 8 (such as 8=1 or better, accord-
ing to Vallier’s procedure, 8=cos%¢$) in a provisional calculation
of the trajectory in respect of the vertex, and provisional values of
s, Us, Ys. A repeated application of this procedure does not always

lead to a more accurate result. Vallier denotes 8% (v,) by 1 .
m

Another somewhat more exact formula for B8, given by Vallier, may
be stated here without proof.

Suppose a preliminary calculation of the ballistic elements
29,01, 6, has been provisionally made for the point (x3,) with
abscissa a, = 02252, then

8 [9%:‘%) + 4%] 1(wy) sec?p

=9 (vl)'f—gl—) (1 -000011 v,) sec® 8,

+ 45wy S’f) (1 = 0:00011%,). woovvecrrrernennn 9)

The author, in 1910, has proposed another form of the Vallier formula for 8.

In the preceding calculation the value T_O 55, has been assumed.

In the provisional calculation of a trajectory, always required in the applica-
tion of Vallier's 8, besides v,, u,, and ¥,, we can calculate z, and X as well.

The ratio z, : X is thus known more accurately; and then the preceding
process is carried out afresh : for instance, the formula (8) becomes the following:

B[( Ty _ ) (7’0) f(us) sec? b (vg)

- (4 O 1) fi—ofzsec:"(j)i (v0) 47 (o) (1 = 000011 g/,)ff}’:;) . ..(10)
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§ 30] numerical methods of approximation 175

in which the special feature is that, with constant ¢, the factors ¢ (z) and Z(s,)
cancel, as ¢ (vp) =1 (v,).

The 8 formulae above can obviously be applied to the ¢ values of v. Eberhard
{§ 10).

y Further it might be possible tv have a suitable value for the function ¢ (z),
instead of the linear ay+«,2, which might apply to a definite group of values of
<, %, ¢, for rifles, field guns, howitzers, etc.

Finally it may be noted that the choice of the mean value c=cos¢ in
vcosd wcosé
=T¢ cosg
obtain p from ealculated trajectories (§ 32) or from observation; here ¥ denotes
a mean of the values of 8 at the ends of the corresponding arc of the trajectory.

was arbitrary. More generally, we may put o =cos®y, and

§ 30. Approximate solutions of P. Charbonnier,

Charbonnier attempts the calculation of trajectories, equally by
the help of expansion in series, but yet in a manner essentially
different from Siacci and Vallier. His method may be explained here,
as applied to flat trajectories.

A first approximate solution is made on Krupp’s method, or
according to Siacci I, with a=1, based on the system

1 1
~’G=;(Du"DUo)1 tan0=tan¢—§—c(Ju—Ju,),

A, — A, 1.,
y—wtanqS 2 (D D‘o Ju‘,)’ t=g(fu—Tu°),

in which u=vcos8, u,=v,c0s ¢, and ¢f(v) denotes the retardation
due to air resistance.

The exact Chief Equation is
do g d(vcosd)

cos*d v 1f(v) cos?d
or, with v cos § =u, and

) f (v) =$()=4¢ (vcf)c;sﬁe) ¢ ((_:(%9) ’

it may be written

dd g u du
em=5¢(m) e )
Employ on the right-hand side of the equation the expansion
1 6 56 1 "6‘
m=1+21+ te eeT 1+ 1trst
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176 Second group of - [cH. v

0 that .
g g uf?  Sufh 0 264
cos: 0 5¢(1+2’+T!+"'> (1+T+1-_3+“')du’

and here the function ¢(u+ %6;+ ) is expanded by Taylor's

Theorem, and written )
_¢( )+ ¢( )_*_64 |:5¢I(u)+u2¢//(u)}+

Multiply together the two series, and the equ1valent of the Chief
Equation in (1) may be given in the form

dé _g {¢ () + 62 [u¢> (“)+¢(u)_|

cos®d ¢
+ o [,3,4;(1@) + 3u e’ (u) +§ ¢ (u) + } + } du.  ...(2)

If 6 is so small that only the first term in the square brackets need
be retained, we have

0 _g gd(vcosf)
cost 0 4’( ) du CW ............ (3)

and this is the approximate equation, which formed the basis of the
previous Krupp solution, and that of Siacei I, with a=1.

A second approximation is reached when the first two terms of (2)
are employed. The simplified Chief Equation in this case leads to

= tswr e[y 4]} au

cosif
or since
OE ﬁ” ¢@=:%%%¥@,
do gdu N
cos’0 Clbf(u) 6 Y(u)du, .oooviiinenninan. “4)
where
1 S

Y= 5~ 2P ()

Even this differential equation between 8 and « will lead to diffi-
culties in an exact solution, because 6 occurs on the right-hand side;
for this reason, Charbonnier replaces 6° on the right by tan®é as an
approximation ; and as a further approximation takes the expression

tan 6 = tan ¢ — % (Ju—Jy,) from a former equation (Siacci I with

a=1).

Digitized by Microsoft ®




§ 30] numerical methods of approxcimation 177

Substitute then in (4) for 6° the expression (q - 210 J (u))’, where ¢

denotes tan ¢ +%} J (o), and an equation is obtained containing 6 on

the left, but « only on the right. "This is integrable at once; that is

o _ gdu _ g
oosts = i+ ( (-3 J(u)) V@) Aty e, (5)
and this gives, with J@w)y=- f %,

tan 6 —tan ¢ =— .)1 J(u)+ J(uo)

H[* [+ Groy-1wyw)
Suppose further that three new primary tables are set out, namely

for f ¥ (w) du, f J(u) ¥ (u) dut, and f J(u)y(u)du, and their values
denoted by J', J”, J* respectively, then

tan 0 = q—--—J(u)+ [q (Ju=J'yy)

+ 4—03(&/” —Ju")— % (Ju" — J.,o")] ()

In the corresponding case the value of ¢ can be calculated more
exactly: for

veos 8 df
di=-— g cos*f’
_ du 9 Gl
so that dt= [1 Lf(u) 6 \[r(u,)du] ,
or on the same procedure
1l du 1/ 1 z

For the calculation of £, further integrals are seen to be required:

f ur () du, J‘ J(w) ur (w) du, f SHu) ur(u) du,

“ and these require equally the primary tables to be calculated, for
T', T//, TIH.
C. 12
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178 Second group of - [cH. v

Finally y will be given by

(v c;s 8y tan 0 do

cos? @’

dy=—

Considering that the construction of further tables is laborious,
and that even when these tables are at hand, the calculation of tra-
jectories is only slightly simplified, the following method is proposed
by Charbonnier.

Eqﬁation (4) can be written in the form :

dé _ gdu_ "
cos?0 cuf(u) L1 = ()]

where . & (u)= 1;{;((;[)) 3;
or approximately:
49 ___g9 _ du 7
cos20—0(1+/c92) 7 O MR )
gdu

Contrasted with equation (3) ——, 052 = (W)’ this equation is more
accurate.

Charbonnier next operates with a mean value of the factor 1 + «6?,
which is different for the ascending and descending branches of the
trajectory. On the first branch the value of that factor is 1 + ¢*x(u,)
at the point of departure, at the vertex it is 1, so that the mean is

1+3¢*x(u). On the descending branch the mean value is
1+ }e*e(u,),

where o is the acute angle of descent, and u,=v.cosw. So that the
procedure is as follows:

dd _ gdu
cos* @ cu uf (u)’
similar to that of Siacei I (with a=1) or to the earlier one of Krupp,
a first provisional estimate is made, determining in particular the.
vertex and point of descent; the calculation is then repeated, and
¢ is replaced by c¢(1 + 3x,¢?) in the ascending branch, where

uof (o)
2f (uo)

replaced by ¢ (1 + {«.w?), where «,=

Starting from the equation ——; on a system of solution

—3%, uy=7v,cos d; and in the descending branch ¢ is

uf (1g)
2f (ue)

¢ or «* is then replaced by tan® ¢, or tan®w, respectively.

— %, u,=v,c08 0; and
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It must be added that Charbonnier’s plan contains a rational
principle for increasing the accuracy of the calculation of a trajectory.
Nevertheless it is somewhat laborious, in spite of the employment of
tables, which Charbonnier has calculated recently (see Note). This
method of approximation, which provides a separate calculation for-
the two branches, is tested, partially at least, in §§ 32, 33,

§ 30a. On the secondary ballistic functions, and on
ballistic curves.

1. The Secondary functions.

The Bernoulli-Didion solution in §25 may first be examined.
There the functions B, J, V, D enter in the equations (1) to (4),
serving for the calculation of y, 6, v, and & Subsequently the func-
tions E and ® are derived from these. ’

So also in the Siacci I procedure of §26, the functions E, N, Q,
0, 8, 8’ are introduced as supplementary.

Corresponding relations hold for the system of solutions of Siacei IT

and II1, §28, and of Vallier, §29. Writing ¢’ for —1—, this system of

B
equations is as follows:
’i,= D (u) —D(U))s coreerrreeree et (1)
= [T (u) T ()] ™ cveviiriiniiiiiiiiiir i, (2)
tanf = tan ¢ — T [J W) —=J (V)] cererrerirrnierien, 3)

I

y=aztang— 5 ¢{A @)= 4 (v)) — J (v) [D (v) - D(vo)]}

A (w) — 4 () :
=xtan ¢ — 3 cosz (D W =D(w) J(?Jo)), ......... 4)
‘ P =—r :;Sgb, Vo=Upj veeeee ererreeennarnn (5)

and thus the elements z, ¢, 8, y of any chosen trajectory are expressed
in the parameter u.

The functions occurring here, D, T, J, 4, are called the primary
ballistic functions (tables for them in Vol. 1v, Table 12 @ and
Table 13).

12—2
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Denote f, in equmtion (1) by £, and for the end point of the path,

where z= X, let - be denoted by &.; then equation (1) shows that

u 1s a function of ’g’ and v,. |
Let (2), (3), (4), be written respectively : . 1

T(u)—T (v)=H (v, &),

J (w) = J (8,) = L (v, E),

p: | (u) -4 ('Uo) _
D)= D) J (v5) = E (v, £).

It is easily seen, how by help of the primary tables, the secondary
tables for H, L and E, can be established. A definite value of », and
£ is chosen, and then, for example, from equation (1) we get the value
of u and thence of J (u), and thence the value of L.

Tables may also be calculated for % =N, and L-E=M.

The system of equations is given then in the form:

g:p(u)—p(vo)' .............................. (6)
= qu(vo, E), oo, (7

tan 6= tan ¢ —— '¢ O S N (8)
=tan¢[] = ¢L(vo, g)] ............... (9)
y=atang - "o osz¢ E (o, £)y wovrerrrennnen, (10).
- 2;”;4) [sm 2 _E(, g)] ............ 1)

. Referring specially to the point of descent on the horizon through .
the muzzle, here y=0,2=X, 0= —w, v="1,, u=1u,, E=£,.
Thence, from (11), sin2¢ =c E(v,, &), and since ¢ = )—(, and

[

E_‘Qg’_@ = N (v,, &), it follows that

2N &)
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Equation (10).gives, when y=0, tan¢ =
from (8):

¢E’(vo, £.); and so

¢E, ¢, _ ¢,

—tne=g cost¢ 2cos’d  2cosi¢p’

Therein L, is to be written for L (v, &), %, for E (v,, &), and so
on; and so too, L, for L (v, &), £, for K (v, £,), and so on.

For the point of descent, equation (9) is written :

7

cL

in 2¢

—tanm=tan¢(1 - ) or smcesxrl2¢=E,,

- Ly _ i
—tanw—tanqb(l - E) =—tan¢ E,
At the vertex of the trajectory, 8 =0, tan § =0, so equations (8)
and (9) become
L cL,
tan (i) = ¢ and 1= S’l—l'-12_¢) .
Finally it follows from equation (11) that

'z sin 2 xz, tan M
y 2COS;¢( 014) E) 8LE ¢(L Es)—-TQtaD.¢

Hence the following formulae:

&=§, ...... (12)
sin2¢=XN (v, E)=c'E (v, &), | ...... (13)
P e (14)  for the point
> > & (15) of descent,
Ee= (ue)’- (UO), """ y=0’ =X
...... 16
=— ¢ H(w, £), (16)
—tanB =fanw= 2¢]|[(’Uo, Ee)
M (v, &)
o o 17
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=L(vo, £, A (18)

o qb H@, &), | - (19) for the vertex,
&= Ty, Y=1Ys

f1= 2= D)~ D), } ...... (20) 6=0

sin 2¢
c/

ty=

Ys= Qcos2¢1‘ (%, &)

Z” W, &) | ... (21)

I’ (/"0’ Es) ’
ye=uzcosp. [ .. (22)

The functions introduced here, E, N, H, L, M, are called the
secondary ballistic functions. The corresponding tables are give'n in
Vol. 1v, Tables 125 to 12 1.

The use of these seconda,ry functions is evident at once, when the
problem to be solved is thus: the range X being measured, and the
angle of departure ¢, and the initial velocity #,; to find the time of
flight T, the velocity v, at descent, the angle of descent w, the
abscissa @, and ordinate y, of the vertex.

The solution is laborious with the use of the primary functions,
D, T,.J, A (compare Chapter VIII for the solution of particular
problems of trajectories); on the other hand with the secondary
functions the solution is completed very simply:

In equation (13), sin2¢= XN (v,, &), ¢ and X are known, and
consequently XV, and since v, is known also, £, can be calculated, and
¢ also, by (12).

Equation (16) gives T, and (17) gives w. And D(u,) follows from
(15), and also %,. And v, can be calculated from (14). Further

Ea"? is given by (18), and #,; and then the value of ¥, from (21).

=, tan ¢

It is evident moreover that there is nothing to prevent the intro-
duction of other secondary functions, in addition to E, N, H, L, M.
For instance it follows from (12) and (16) that

X »
E cos ¢H(v0: Ee):
and consequently, if another function R is introduced for g, and a
table is calculated, we have
X
T=Es—$ R(w, &);

and so forth.
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2. The Bullistic Curve. (Vol. 1v, diagrams It a to 111 4.)

Equations (I) to (IV) in §23, give the point of descent (z=X,
y=0, 0=—0, v=2, t =1, u=1.): then

X
7” = D) = D(UgY, wvevemrereieeieieeeeereeireeeenns (1)
T= o [T(u,) = T(1e)],  verririi (2)
1
—tanw=tan¢ — Toy [ () = J ()], weevvnrnrenennnnnenns 3)
e L [A )= A(w)
0 =tan ¢) 207 [m - J(uo)], ......... (4)
¥, COS .
U™ Ty e (3)
uF@“’. ............................................. 6)
Let X< be denoted by &.
Equamon (1) shows that, from u, and £, u, also is given; conse-

quently from (2) -+ 'Y T is a function of u, and &; and from (3) the same

h holds for (tan ¢ + tan o) 2¢y; and, from (4), 2¢y tan ¢ 1s a function of

i u, and £; or,
[ . .____1 — te 5
T=aFl(uo, E): tanw—2che(”0: E) tdnd)’

1
. tan ¢ = Soy Fy(uy, E),
‘l‘: and it follows also that

1
v . tan w = oy F(u,, &)

Assuming the two quantities u, and £ are known, it follows that
these also are given:

tanw K,
tang F’

¥, COS @ ..
“——— =— and u, is given by u, and §;
vcosd Uy

thirdly win2e

firstly :
secondly :

’

_ uda® Zsingcosd _ —9us

COSR(b X 0 2 Y FS(UO: E) —'ELF (“o; f):
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in which only known quantities are present;

. r =2 V(20y) — ﬁ Fi(uy, )
fourthly'»\/(Xtan¢) C’yFl(uos 13 XV F(us, B = VE VT, B

The equations (I) to (IV) give in a similar way the vertex of the

tra,je‘ctory, for =0, 2=, y=y,, t=1, v=1,, u=us=qﬁ; and 1t is
g

. Ty Ys
easily seen that X and Xtan g

It has already been convenient to choose ¢ =cos ¢ and y = Bcos?¢
(Siacei IT and IIT); then u, =1, and £=c¢BX, and the results can be
expressed in the following manner: Suppose v, and ¢3X given, then
the following elements of the trajectory are known:

are given with %, and &

visin2¢ tanw _
.X - 1 tralnd) - 2>
¥, COS @ Vi z, Yy

A

¥, COS ¢=A3’ VX tang) v =4 Xtan ¢ 4s;

and finally 4,=£4,.

In practice, the initial velocity is usually given, and also the range
X to which the gun fires with angle of departure ¢, so that 4, and v, are
given, Then A, is given too, and with it the acute angle of descent
w; and A; and consequently the final velocity v,; 4, and the time of
flight -7'; A; and the abscissa of the vertex z,; A, and the height
of the vertex y,; finally ¢BX and thence ¢8, and consequently the
product B, given the calibre 2R, weight of shell P, and air density 8.

It is clear from the above that these factors 4,, 4., 4,,... can be
calculated with the appropriate tables. For instance Schatte took the
Ballistic Tables, No. 13 of Siacci 1896, and the Tables of Fasella, in
which several of the factors are calculated ; and with their help, on the
suggestion of the author, he constructed the six curves, Tables III a—f,
which are printed in Vol. 1v.

If the elements of the trajectory ¢, X, o, v,, @, ys, T could be
observed directly in numerous trajectories (Method of Neesen) it would
be possible to construct such a curve empirically, without a law of air
resistance, together with primary and secondary tables; and for 8 the
value in Vallier's formula would be assumed.

On the assumption that the Range Tables are of purely experi-
mental nature—which is known not to be the case—an empirical
curve could be drawn from a number of Range Tables; it appears
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that such tables can give good service for a convenient solution of
trajectories. )

The form of the factors A,, A,, 4,, ... 1s the same as that of those
employed by Siacei and Chapel in their Tables of Factors of Fire
(§ 25), on the assumption of the quadratic and the cubic laws of air
resistance.

The above remarks have shown that these factors have a far-
reaching generalised meaning, as they can be established for any given
law of air resistance.

But the assumptions must always be known, on which the solution
is based ; thus it would be a mistake if any one were to apply these
curves to a high angle trajectory.

Numerical examples are given in §42.

§31. Graphical method of solution of the ballistic problem.

Given the initial velocity v, and the angle of departure a for a given shell: to
determine in a graphical manner the elements, such as range, time of flight,
ordinate for any given abscissa, velocity in the JIrajectory, and so forth, on the
assumption of a given law of air resistance, and retardation due to air resistance
ef (v). For instance, for v < 330 m/sec,

0014 x /i 8%
o)==t

air resistance Wikg)=mef (v) = %ﬁ;—ﬂiz 2

A, Method of Poncelet-Didion (1828).

This may be treated as a graphical development of the first group of numeri-
cal methods of approximation. It depends on the application of the law of
kinetic energy.

Let A/, be the point of departure, M, 7, the direction of departure of the shell,
¥y the initial velocity. We suppose at first the trajec-
tory divided into elements MM, M\, 3; My, My My, ... so
small, that each arc may be considered straight, as if the
trajectory were a polygon with straight sides.

The air resistance at A/, is along the initial tangent,
and directed along AM;¥,; a component of gravity
acts also in the same direction, and gravity is supposed
to be resolved into the direction of the tangent and
normal at every point of the curve; so that along the
tangent at A/, air resistance + gravity component
Ny Py="Ty= 1 (v,)+ Psin ¢; and this can be calculated
from v,, ¢, £, ¢ Now along the tangent the decrease of kinetic energy of
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the shell is equal to the work done by 7}, in the short distance M, 3/;; assume
the force T}, constant along this arc, and we have

v —dmo =M, M. Ty;

and hence #; can be calculated ; for we know 77, v, and m the mass of the shell,
and M, M, can be chosen, as small as desired. *

The arc M, M, can be described in the following manner: The component
vector M, ¥y (or Ny) along the normal X, C,
gives zero work. The force .V, is thus employed
in curving the path, and so has the magnitude
No=nt q—;)i: . Thence the radius of curvature 3/,C,
or p, is known at M, and so the point of
intersection €, of the two consecutive normals
MyCy and M, 0. Round C, describe a short.
arc Jy M, with radius 3/, C,, very nearly co-
incident with the chord A, #;; and so the
point A/ is reached, at which the new tangent
M M, is the tangent of the circular arc at M,
and is perpendicular to M, C;.

Proceeding from M, the same procedure is followed ; we calculate

2
Ty=W () +P.V,, and ¥, =m7;—1— ;
1

and this value of 7 is employed in
Imo2—dmvt="T. M M,

to determine the new velocity v,; while the component Jf; ¥7 (or V) gives the:
new radius of curvature p; or M; C;; and so on.

This is the procedure of the construction by points; after passing the vertex,
the two forces, air resistance and tangential component of gravity, are obviously
opposed to each other; and for that reason care must be paid to the sign in the
calculation of 7.

Finally the time of flight is found as follows: in describing the arc A/, M, the
shell takes a small time ¢: assume the force 7, constant along M, M, ; this force
is then the mass m of the shell, multiplied by the ratio of the diminution of the
velocity v, — #; to the time ¢ in which this takes place; and so

V-0 My — MYy
Ty=m 2" or t=""T_—"1;
0 : ] TO bl
. 2 2 MM, .. . .
or since mu 2 — me2=2M, M, . Ty, thence t= ————~., This is a relation which
0 1 044 09 % (vo + Wl\
2 7

can in fact be deduced by noting that the arc M, Jf;, actually described by the
shell with diminishing velocity, can also be considered as described with a
constant velocity, equal to the arithmetic mean of the initial and final velocities,
vy and »,, at M, and M;.

The whole time of flight is then the sum of all- these small elements of
time. '
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The vertex also, which is the point of least velocity, and the point of shortest
radius of curvature, ear be determined graphically in this manner.

In very flat trajectories, the radii of eurvature, py, py, ... are very great; so
that the points Cy, €}, ... are at a great distance.

Didion proposed in this case to consider the ares Ay A1y, M, M, ... as circular
or even parabolic arcs. On the first assumption we have for instance, taking
My Ty as abscissa axis and the direction of M, C, as ordinate axis, (z, ¥) the co-
ordinates of M, the equation a2+3y2— 2pyy =0, from which p, or y follows. For
further details, consult Didion.

B. Graphical solutions of approximation, by
the author (1896/7).

The procedure can in particular be useful in cases, in which it is required
to determine without trouble at numerous points of the trajectory the ballistic
elements, such as the coordinates, the velocity of the shell, time of flight, and
slope of the tangent; on the assumption of direct fire and knowledge of form
coefficient. The solutions rest on the mechanical principle of independence and
on the application of the empirical tables, for example, of Krupp (sce Vol. iv
Table 8).

First consider the constructions of the trajectory in a vacuum (figs. 1 to 4).

In fig. 1, let OB, B;... be the straight line drawn from the origin 0 in the
direction of the angle of departure with the horizon: and take equal lengths
OB,=DB, B,=..., representing to a given scale the initial velocity v, or some
constant part of it.

From B, B,, ... the vertical distances B,0,, B,0,, ... are drawn downward,
equal to 4g.12 49.22 1g.3% ..., so that O, O), 0s, ... are points on the path.

Fig. |

A similar construction, as is easily scen, is given in fig. 2: draw 0C) equal to
2y in the initial direction, and €;0,=3%g: then 0,C; equal and parallel to OC;
and C;0,=3.%g; further 0,0; equal and parallel to 0,C; and C303=5.}g, and
50 on.

A modification of the original method of fig. 1 is shown also in the
construction by chords in fig. 3: draw ODy=w, in the original direction and
D,0,=%g; next 00,=0,D; and D,0,=2.}g; then 00; prolonged to D, so
that d;d,=A4;4,=A,0, and Dy0; is equal to 3.3¢; and so on.
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In the last construction the following convenient method can be employed.
Draw (in fig. 4), 04, =4, d,=4,4;=".., and verticals through 4,, 4,,...; and let
OE| be the initial tangent of the trajectory. Make £, Oy=4g, where OF repre-
sents the initial velocity in m/sec, and then E, 0y is the corresponding distance of

O ST R T O T S T QT e AV T TR A

Fig. 8. Fig. &,

fall in the first time element. Join O, with the midpoint 3, of OE;, and let the
prolongation of 2, O; cut the vertical through 4, in £,. Make £,0,=E, 0, and
draw M, 0, from A, the midpoint of O, E,, and so on. Then in this case the
trajectory passes through the points O, 0, Oq, Os, ... and ON,, ¥, 0y, M,0,, ...
determine the tangents of the trajectory. This method has the advantage in
construction, that the equal lengths $g=E; 0;=FE;0>= ...can be set off with the
compass.

All these constructions can be adapted to motion in the air, and so are of
practical interest.

1. Begin with the construction in fig. 1, and treat it in the following manner:
The movement of the shell is supposed to be divided up into a large number of
small equal time elements A¢ (in fig. 5, At is taken equal to one second); the
motion of the shell under the impulse of firing, in these elements of time, will be
along the initial tangent ; suppose then 0B,=B,0,=C, D,=....

Next consider the problem without taking gravity into account, on the
assumption of a definite law of air resistance, with the laws of Chapel-Vallier
or the laws of Siacci. The corresponding differential equations determine then
the loss of velocity A» experienced by the shell in each separate element of
time A¢; denote half the loss of velocity in the 1, 2, 3, ... time elements by sy, s,,
$3, ... respectively.

Where will the shell be found at the end of the first element of time ?

According to the principle of independence, the result (for an infinite®} small
element of time) is the same as if the three influences in operation, the powder
impulse, the air resistance, and gravity come into operation one after the other,
and independently.

Due to the initial velocity, received by the shell from the powder pressure,
the shell would proceed from O to B;: through the air resistance it will move
back a step s, from B, to B, (fig. 5), where it is assumed that the element of time
¢ is taken so small that the air resistance may be assumed to act along the
direction B;0. Lastly, under gravity alone the shell would drop from B to 0,
a distance $gAf)?; and so at the end of the element of time A¢; the shell is found
actually at 0.
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So too in the second time clement ats the shell will have reached a point 0,;
for in the two clements of time owing to the initial impulse the shell would
have reached €| from O; then it comes back from C) to C; under the air resist-
ance alone, i.e., first from €, to C; parallel to the initial tangent 05, a distance

C, C; equal to 3s;, and then from C, to Cp a distance (s, 8,, parallel to the
direction 00;, which may be considered to be the direction of the air resistance
in the second element of time; finally under gravity alone the shell descends
vertically from €3 to 0, a distance equal to 3¢ (3A42+ At,?) or g (24at)% when
the time elements are taken equal,

In a corresponding way the next point O; is determined on the trajectory, by
drawing D, D,=>5g, parallel to 0B, D;D;=3s, parallel to 00,, and D; D =4,
parallel to 0, 0,, and then from D, a distance D,0s is drawn vertically, equal to
39 (3at)?; and so on.

To avoid the prolongation of the line 0B,C, D, from falling outside the
drawing, a modification, analogous to fig. 2, may be employed; and so a line 0,Cy’
is drawn through 0, equal and parallel to B; (|, and then from ¢’ backward the
polygonal path ¢y Gy Gy congruent with €} C3C5 is drawn, and from Oy vertically

down the distance Cy O, is taken equal to 3'% (in the case where each element
of time is taken as one second), and so forth.

2. The procedure is more simple, if the construction of fig. 4 is employed. In
this case it is necessary to determine the horizontal projection of the motion of
the shell, either through the integration of the differential equation, or by
employing the figures in Krupp's empirical table. This table is based on much
“ experimental work, and gives the following quantities for all horizontal velocity
components %, from 1000 m/sec downward, by decrements of one metre per second
down to 50 m/sec; firstly, the air resistance in kg per square centimetre of the cross
section of the shell; secondly the advance Az in metres, during the fall of velocity
of one metre per second; thirdly, the sum SAz of these distances from the be-
ginning of the table; fourthly the time At in seconds, corresponding to the fall
of velocity of 1 m/sec; and finally the sum Sas These numbers relate to a
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sectional load 1, that is to say, in employing the table for a special case, the
corresponding numbers Az and ZAt of the table must be multiplied by the
factor a= PRZ;' 3(36; where P is the weight of the shell in kg, R?x the cross
section in sq cm, 8 the weight of a cubic metre of air in kg; 3 ¢ is the form
coefficient, varying with the shape of the shell; for Krupp’s onglna,l normal shell,
t=1, or nearly so; but it is best determined by experiment, by taking the hori-
zontal components of the initial and the final velocity, which relate to a given
range, and then comparing with the tabular results for the corresponding shell,
The Tables of Krupp provide then the complete horizontal projection of the motion
of the shell. Given the successive points O, 4,, 4, 43, ... on the horizontal axis
through the origin O, the horizontal component u of the velocity # in the tra-
jectory is known at these points, and also the times Ay, Af, ... which are required
in the horizontal motion from O to 4;, from 4, to 4,, and so on.

The angle of departure, ¢, is supposed to be given.

A second trajectory can then be found, that is the one whose projection is
Ay, by drawing vertically downward from B, the line B, 0, equal to 3gat2. The
tangent at O; of the trajectory may be taken as A 0, B,, joining M, the middle
point of 0By, to 0;; and then the construction may be started afresh from 0y,
proceeding in a similar manner; the vertical in 4, meets 4/; 0, in By, and from
B, the line By0;=4gAt,® is drawn vertically downward; then M,0; is drawn
from the middle point of O;B,, giving Oy a third point on the trajectory, and
23 0; the tangent at Os; and so on.

In this procedure the trajectory is shown as an envelope of the tangents; and
we thus describe a trajectory of a number of arcs of different parabolas with

4 e
(IS O TR I O P/ PR VLY / SNV 1 R X 7 72T RN 7 YT N By P PR R 7Y AN NS A TN\

Fig. 8.

vertical axes, corresponding to the number of the lengths 04, 4, d,, ... on the
abscissa axis.

In fact, when the first arc of a parabola between O and ¢ is taken (fig. 7),
the two points O and O, are given on it, the vertical direction of the axis, and
the tangent OB, at the point O.

Now if ¥, 0, is to be the tangent of such a parabola in the same point Oy,
M, must be the middle point of 0B,.

Becanse if the sides of a triangle 4 BC (fig. 8) touch a conic section in 4,, By,
¢y, and AA4,, BB;, CC, are drawn; then by Brianchon’s Theorem, these three
lines meet in a point, A7, and P, B, N, C) are four harmonic points, Now let the
" gide OB, and with it 4,, recede to infinity; the conic section becomes a para-
bola, with vertical axis: the vertical line 3f; @ (fig. 7) joining the point of inter-
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section of the two tangents 47,0 and 3,0, to the middle point of 00, will be a
diameter of the parabola, and so vertical and parallel to A, B,.

At the same time it is evident
that the middle point of 3/, is
another point of the parabola.
Therein lies a very simploe way of
constructing any number of tra-
jectories and of drawing the tangent
at any arbitrary point. Join 3 with
the middle point @ of 00, and
bisect Af) @ in P, then P is another
point of the trajectory, and the
tangent at this point is the line 4
Joining P with the middle point of 0% mermsmr TR S
OM,; andsoon. Fig. 7.

The next question is to settle the .
way in which the range, the part of the abseissa axis between the departure O
and point of descent, should be divided, into 04,, 4,4s, A3 A3, .... The con-
struction will naturally be more exact, if a number of points, 4,, 4;, dg, ... are
taken.

For this purpose, we can either

o

A

S I, Y O

(@) Select the divisions so that the time elements A¢, At,, ... are all equal:
this has the advantage that the lengths B, 0, B,0,, ... can all be drawn with the

A

¢,

B,
Fig. 8

N

same setting of the compass; on the other hand there is the inconvenience that
interpolation is required in Krupp’s Table.
(b) Or the distances 04,, 4,44, 4343, ... can be made equal, and the corre-

sponding velocity and time intervals At;, Ats, ... can then be taken out of Krupp's
Table.

(¢) Finally, the intervening points 4;, Ay, 43, ... can be chosen on the
horizontal projection at any desired interval, and the corresponding time interval
At taken from Krupp’s Table. This procedure is the one which leads to the
result in the simplest and easiest manner if Krupp’s Tables do not require to be
used with interpolation, by choosing suitable, but nearly equal lengths for
04,, 4, 4q, Asds, ...

Examples are given below.
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If we are to avoid the intersection of the tangents in a flat trajectory at

too small an angle, the scale of the ordi-
nates alone is increased ; the range X on
the drawing is not altered thereby.

Further if we do not wish to measure
out with the compass the small lengths
B0y, B30, ... and to set them out on the
diagram, in which case the errors accumu-
late, it is easy to calculate the distances
B0y, C,0,, C30;, ... that are all measured
T E T T from the initial tangent, and then combine

Fig 9 them in one measurement (fig. 9).

Suppose then, with equal lengths O4,=A4;4,= ... the distances B,0,, B,0,,

B30;, ... are denoted respectively by s, 8, 3, ... ; it is easy to show that

BIOI=31, 0102=381+32, 0203=5$1+382+83, 0304=731+532+333+84,

SR AT 7

and so on.
These lengths are given by mere addition, as shown in the scheme
a|a a a
b | atd 2a+b 3a+b
¢| a+b+te 3a+2b+c¢ 5a+3b+c

d| a+dtectd 4w+3b+2c+d| 7a+5b+3c+d

But, in this procedure there is the disadvantage, irrespective of the trouble of
the preliminary calculation, that for a prolongation of the initial tangent 0B, a
very large sheet of drawing paper must be employed.

Examples of the graphical procedure.

1. Ezample. Given the initial velocity v, m/sec, the angle of departure ¢°;
further P (kg) the weight of the shell and B?r (cm?) its cross section, as well as
the form coeflicient <.

To determine the range X, the acute angle of descent w, the coordinates
{4, ¥5) of the vertex, the whole time of flight 7, the final velocity v,; and for any
given horizontal distance &, to determine the ordinate y of the trajectory, the
time of flight ¢, and the slope 8 of the tangent to the horizon.

The horizontal range is supposed to be divided into a number of (nearly
equal) parts 04y, 4,44, 4343, ..., and after application of the factor a= P—ﬁ_ﬁzlzf)ze’
we use Krupp’s Table to calculate the horizontal velocity at the corresponding
points Ay, A, A, ... and the times of flight ¢=3A¢. From the corresponding
time interval A¢, the fall under gravity 4gaf® is calculated, and thence the
distances B0y, By;03, B30, ... (fig. 6) The trajectory from ‘0, the point of
departure, is then constructed, bit by bit, as follows: Millimetre ruled paper is
taken, and on it to a large scale (for instance, for infantry weapons, 1 mm=2m
to 5 m: for artillery, 1 mm=>5m to 20 m) the intervals Az chosen are drawn, or

n
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OAy, Ay Ay, Azds, ...; the line OB, is drawn at the angle of departure ¢, cutting
the vertical through 4, in B,. Make B, 0, equal to §gat,? and join 0, to the
middle point M) of 0B,; then O is a second point on the trajectory and 3, 0,
the tangent at it. In the same way make 5,0, equal to the second drop 3gat.?,
and join Oy to the middle point Jf, of 0,B,; then Op is the point on the
trajectory with projection at A,, and 3,0, is the tangent at 0,.

Proceed in this way till the ground is reached again; and continue with the
construction somewhat beyond this point.

If it is necessary to obtain extra points on the trajectory, we can do so by the
construction of fig. 7; thus for instance to insert points between O and 0,, draw
00,, midpoint @; then P, the midpoint of M, @, is a point on the trajectory, and
the tangent at P is the line joining 2 with the midpoint 3 of 0.M,. In a similar
manner another point P with its tangent can be inserted between O and P, and
so on. Proportional interpolation is often sufficient.

The vertex of the trajectory and the danger zone are determined on a sheet of
squared paper.

The times of flight and the horizontal velocities are obtained fromn Krupp's
Tables; the actual velocity » in the trajectory is obtained from »=1u sec d, where
6 is taken from the drawing.

A knowledge of the correct form coefficient ¢ is of special importance for the
accuracy of the result.

When the trajectory is very flat, the scale of the ordinates requires to be
chosen much larger than that of the abscissae; and then it is possible to draw
B,0,, By0,, ... with greater accuracy, and the successive tangents do not cut at
too small an angle in the drawing.

The choice of the size of the intervals 04,, 4,4,, 424;, ... is made, so that
they are nearly equal, but not so that interpolation is required in Krupp’s Table;
and these distances (8—15) will be measured out, so that the points Jf, and 0,,
M, and 0y, do not lie too close for a drawing of the joining line to be uncertain.

If the decrease in air density 8 with increase in height y is to be considered,
this can be allowed for in a simple manner by taking a mean value between 8§ at.
the point of departure and at the vertex, and the construction is then repeated.

(2) Example: Initial velocity vy=441 m/sec; angle of departure ¢=15°16%

and tan ¢=%. Calibre 212=88 cm; weight of shell P=75 kg, §=1-206,
- 1 £ i . . .
=123, and so = RZ“._O 100, ; initial horizontal velocity

uy=1p €03 =425 m/sec.

The lengths 04,, 4,4,,... or Az on the horizontal axis may be chosen so that
they are about 500 m long; then the values of Zax in Krupp’s Table proceed at
500
0100,

"Here the construction of fig. 6 is to be applied; 0.4,=491 m, 0A,=1002 m,
04;=1512 m, and so on; B,0,=78m, B;0,=11'5 m, and so on.

The drawing on a scale of 1 mm=25 m for abscissa axis, and 1 mm=2m for
ordinate axis is shown in the figure on page 196; but in the reproduction the
original drawing was reduced to one-third, and the millimetre lines omitted.

C. 13

= 5000 m intervals continuously, but so that no interpolation is required.
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Consequently the following numbers are those required to be taken from the

Table.
s Multiplied by 0°100, the | Correspondin
Horizontal | Krupp’s Table actugl valugs, from O fg.ll 8
veloeity u
ZAzx ] SAt Az m ZAt sec }gAPm
At O 425 23711 3693 0 0 0
» A1 358 28619 49'57 491 1-264 78
. 316 33734 6487 1002 1-530 115
,, A3 287 38830 8178 1512 1-691 140
5 Ag 263 43858 | 10007 2015 1-829 164
» As 242 48730 | 11939 . 2502 1932 183
» Ads 223 53655 | 14061 2994 2:122 22-1
» A 206 58750 | 164-40 3504 2379 27'8
» Ag 191 63961 | 19069 4025 2629 339
R P 179 68725 | 21647 4501 2-578 326
R 1) 168 73624 | 244°74 4991 2-827 392

The results of the graphical solution are as follows:

Range

Angle of descent

Total time of flight

X=4501 m,

0=24°53% (ta.n w=

T=180 sec,

Final horizontal velocity =179 m/sec,

Final velocity

Abscissa of the vertex

Ordinate ,,

179

P=

=2600 m,
=412 m.

T cos 24°53'%

232
5%):

=197'3 m/sec,

Moreover the drawing can be measuréd directly to give the slope of the
tangent, and the height of flight:

Om

491
1002
1512
2015
2502
2994
3504
4025
4501

Xr=

=16° 17
12° 38
11° 31

8° 45
4° 55'
0° 52

— 4° 50

-11° 5

-18° O

—24° 53’

6=¢
6:

tan §=02732 y= 0
112 : 500 1260 m
102 : 500 239'5
77 : 500 3296
43 : 500 3880
7'5 : 500 411
— 425 : 500 3945
—  98:500 325°H
—162'5 : 500 1885
- 232:500 0 to about 0-2 m

In illustration of the remarks on the insertion of additional points on the
trajectory, the additional point P is constructed in the drawing between O,
and Oy; 0,0, is drawn, bisected in @, and P is the middle point of M, @.

(b) Example: 2R=24 cm; P=215 kg; »=640 m/sec; §, on the ground,

=1'206, $=22° i=1, $=O'476.
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§31] numerical methods of approximation 195

Allowing for tho alteration of air density, we have
X=136501m, »=27°38%, 2,=307-5m/sec, T=373sec.
From caleulation (Table, Vol. 1v, no. 12a) the results obtained were
X=14170 m, ©=33"36", v,=323m/fsec, 7T'=381sec.

(¢) Example: v,=465 mfsec, ¢=9°yy, 5—0'1548, X=4075m (observed
4000 m), T'=12'75 sec (observed 130 scc), »,=253 m/fscc (range table 255°5),
z,=2250m, y,=214m.

2. Problem. Given the range \ initial velocity v,, as well as the shape and
mass of the shell, in P, 28,7 To ﬁnd tho angle of departure ¢, and the other
elements.

As before, a graphical solution is the best to employ, taking a provisional
value of ¢, sclected by a comparison with the range table, A certain range .X;
is obtained, not agreeing exactly with the given . But the trajectory is re-
volved or swung like a rigid line about the origin 0, until the range becomes
the given X. The angle A¢, through which the trajectory must be turned down-
ward, must then be subtracted from the angle of departure ¢, (or must be
added). Thereby ¢ is obtained, and as in No. 1 the other results, all referred
to the true range as abscissa axis.

Take the same numerical example, with .X¥'=4300 m; to find ¢.

The trajectory is first constructed with ¢=15° 17, as was the case in the
example above, when the range was found to be 4501 m. The trajectory is now
turned about O till the range is 4300 m : thus a circular arc is described about
a centre O with radius O W,;=4300 m, cutting the trajectory drawn already in
W, and O W is drawn, which is the true abscissa axis,

The angle W 0 or A¢, through which the turn is made, is given by
tan A¢ = 1835, AP =1°23": and this angle is to be subtracted from the pre-
vious angle of departure.

3. Problem. QGiven range X and angle of departure ¢, and also P, 2R, and 7.
To find », and the other quantities.

The simplest procedure is to choose a range table, with a value of #, as close
as can be found to the given ». Then with the initial horizontal velocity
2y ¢08 ¢, employ Krupp’s Tables, and make the drawing. A range X is obtained
thereby, but not identical with the given X. If X, is smaller than Y, select
another value of vy, to give a range greater than X, and make another drawing
which determines a second range X,. Then by interpolation between .Y,, X,
and X, a value is found of the initial velocity v,.

A saving of labour results from not calculating a second time the complete
list of the values of 0A4,, 4,4,,..., B0y, B;0;, .... The first interval alone is
increased or diminished, and the other numbers remain unaltered, while the
horizontal velocity at O, and the first step Av; or 04, and the first drop B, 0,

. are different.

4. Problem. Given vy, ¢, and X'; to determine the factor a (for instance, to
find 7, when P, §, and 2B are given).

This important problem, which requires in Siacci’s method a double calcula-
tion and subsequent interpolation, and only by the employment of the secondary

13—-2
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196 Second group of - [cH. v

H funections can be carried out
with ease, (but then solely for
;‘p{’ the case of a small angle of
departure), requires here a
2 double construction of the
trajectory. The most con-
of venient procedure, after com-
parison with a suitable range
table, is to assume a value
of @, to construct the tra-
Jjectory, and to determine a
value X of the range; then
assume another value of a
and determine another X,
then interpolate.

o It is evident then that
2 this graphical procedure is
not suitable for the calcula-
tion of a range table, but it
is advantageous for a case,
where v, ¢, a are known,
and a series of intermediate
points of the trajectory are
required to be found.

And in problem (2) an
investigation must be made
as to whether the tilting of
the trajectory is permissible
" or not.

The method should not
be employed for an angle of
departure over 30°.

The method can be con-
sidered to be a graphical de-
velopment of the second
group of methods of solution.
It can be applied to each of
the corresponding tables. So
also o and y (§ 23) can here
be chosen as desired.

237
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&

< {4

Ps

N
e

2000

T
1

300

3]
The original diagram reduced to %3, and the millimetre division-lines omitted.
2@ 3

Wi

X Remarks.

3 1. The work of A. Indra

N t (1886) on “Graphic Ballis-

) tics” is based on the follow-

-y ing ideas:

In fig. 3 above, and in a
vacuum, the points 0,0;0;

| on the trajectory are the

Py

Lo
00
196

00
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§31] numerical methods of approxzimation 197

intersections of a pencil of rays 00y, 00,, 00;, ... with the parallel rays D, 0,,

" Dy0,, D305, .... When the space is supposed to be filled with air, the focus of
these parallel rays is supposed to move from an infinite to a finite distance.
But there is no proof that this fanciful analogy has any real bearing on the
question of air-resistance.

2. A graphical solution has been published by Dr Rothe, 1911, in which the
relation between » and @ has been taken as the starting point (similar to the
planimetric procedure in §§ 33 and 37), To the details of Rothe’s solution some
objections have been raised by H. Rohne and von Narath (sce notes).

3. Graphical representation of the ballistic auxiliary functions.

Didion (1848) exhibited in diagrams in a convenient manner the functions
arising in his analytical solution, and they have the advantage that by their
use the interpolation is simplified. Since those days graphical representations
in Mathematics and technical work have been developed, more especially by
M. d’Ocagne, R. Mehmke, C. Runge, R. Rothe; and in ballistics these methods
aro valuable.

The representation of a function between two variables can be given often
with advantage in “logarithmic” and other “scalar functions.”

And functions of three variables can be represented in a family of curves on a
coordinate system. But frequently it is better to represent it by a table. See
Note (d’Ocagne, Mehmke, Schultz, Schrutka, Schilling, J. E. Mayer, Soreau,
v. Pirani). The procedure was first applied in Ballistics by G. Pesci, G. Ronca,
Garbasso, R. von Portenschlag-Ledermayr, A. Nowakowski. Nowakowski has
lately described a method to determine the abscissa # of the trajectory cor-
responding to a given height of flight y, by means of the application of a
logarithmic scale, to suit all trajectories of given . .

He has given a description of a Range Table, in which the trajectories are
laid out on a curved surface, and this surface is cut up into lines of section by
horizontal planes.

Digitized by Microsoft ®



CHAPTER VI

Investigation of modern methods of calculation,
and of their accuracy

§32. The caleulations of a trajectory according to the formulae
in use are subject to a double error.

The first part of the error arises in that the Chief Equation in
the ballistic problem cannot be integrated exactly, but is treated on a
method of approximation, and this is different in the various systems.

The second part of the error arises from the fact that the
function for the air resistance, comprising coefficient of form, density
of air and its variation, ete., is not known with accuracy.

But at the present time it is not yet known which of these errors
is the more serious.

The different approximate methods of calculation must therefore
be tested, in order to see the magnitude of error arising from the
method of integration, and also how far the errors in the integration
counterbalance one another.

The modern methods of solution have the following in common.

As before, v denotes the velocity in the trajectory, # the slope
to the horizon of the tangent of the path, ¢ the time of flight, ¢f(v)
the air-resistance retardation, at any point (zy) on the trajectory.

The exact Chief Equation of the problem is then

d6= gd (vcos 6) or de g d (vcos@) _
vef (v) cost 0 » cos 0 f<v cos ?) l’[ oos 0]]

As an approximation, the two values of cos 6, contained in the square
brackets, are treated as constant along the trajectory, and replaced
by their mean values, o and v respectively : so that

2 cos @
dé _ g d (v cos @) _ gd( o ) _ g9 du
cos® 0 vcosﬁcf(vcose)ry vcos@g%vcosﬂ)y yeuf (w)
g \ -3
v cos &
where 4= ——.
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§32]  Modern methods of caleulation and their accuracy 199

This differential equation between w and @ is integrable; the
variables are scparated. Therefore we obtain

a? =T =T
x—%(Du—Dw): t—'yc(‘[u Tu);
tan0=tan¢—:,i-(Ju—Juo)3

= & tan ¢ 901 ’I-Au, uy = Juo (Du - -D!lo)]s

where
du J (w) udu udy
Ju=-2g Au=—|—F7~—, Du=—] .,
uf(u)’ f(w) " fw)
o du _veosd _%cos¢
Le==Jiay *= = %= "7 -

This system of solutions, depending on the above mentioned
general procedure, may be called the Modern System (compare
Chapter V, 2nd group of solutions).

In all of them an error is present, because o and  have been
assumed constant, whereas in reality they are variable along the
trajectory.

They differ moreover in the choice of the value, more or less
approximate, of ¢ and 1.

When the object is merely to settle the corresponding error, and
to classify the systems according to the error, the comparison must
be made on the same law of air resistance, including the form
coefficient ¢ and air density 3, and further the same angle of de-
parture ¢ and initial velocity v,; and then the investigation must
determine the magnitude of the error in the neighbourhood of the
vertex, and at the end of the trajectory.

Concerning the method of investigation, Cauchy’s Law on the
approximate solution of a differential equation must first be stated.
Suppose a differential equation dy = F (x, y) dz, between the variables
x and y. Starting from a given point #,%,, take an arbitrary small
increment Az, and calculate the corresponding Ay = F(a,, ¥,) Az
a second point (z + Az, y + Ay) is obtained on the curve.

Proceed from this point in the same way to another third point,

- and so on, building up in succession the integral curve as a polygon

of small finite straight elements.
Then if ¢ is the greatest value of the different Az increments,
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200 ' Modern methods - ~ [cH. VI

further if A, B, C denote the greatest numerical values that occur
of F, %g, %ll; respectively, between the starting and the end point of
the corresponding part of the curve, and if » is the number of elements
employed, then the error of y at the end of this part compared with
B+AC (1+Cey*—1 .

2 ¢ )

This procedure was employed by St Robert in an example with

the true'value of v is always less than

small initial velocity, where he started with the function L 15‘:) ), which
changes only slowly; and he has thus obtained an upper limit to the
error.

This method involves great labour if the accuracy is to be such
as is required in the present case.

On this account the following method was introduced by the
author (1909), in order to obtain several “Normal solutions” of
the trajectory problem, for purpese of comparison.

Mayevski’s Law of “Zones” was assumed as a basis; this takes
a resistance function v™, with » an integer, for velocities from v =550
m/sec, downward. In such cases the Chief Equation can be inte-
grated exactly: care must, however, be taken that the constants of
integration are adjusted, so as to make the change continuous from
one zone to another.

The relation between v and € is thus known; in particular the
vertex velocity v; is known, where § = 0.

v sec

2 2
The functions of 6, %, ¥ tan g, , can then be calculated in

terms of 8. These functions, after they have been determined for a
number of values of 6, are to be shown graphically on a large
scale.

Finally the summation of

w=-——1-]112d€, y=—1fv“tan 8dé, t=—1f'vse00d9,
g g g

is carried out either by a planimeter or integraph.

Since the probable error of measurement by a planimeter can be
determined as a percentage for the actual curve by measuring a
circle or square of similar area, the probable errors w,, w;, ws,... of
the individual portions of curved-line areas in the measurement are
known.
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The probable error of the sum of the parts of the area is then
Vo +wld+..) = w. )
If a part is measured 10 times, the error of the final result, for
example of z, or ¥, or ¢, is probably —-_.
V10

Six different normal trajectories have been calculated in this
manner, on the basis of the same laws of air resistance.

The corresponding zone-laws are the following. The retardation
¢f (v) of the air resistance is:

for v = 550—419 m/sec, where
retardation = 00394 ¢»?; Remig$
for v = 419—375 m/sec, C= P 1206’
(4) . .
retardation = 0:09404 ¢v*; 2R = calibre in m,
for v =375—295 m/sec, 1 = form coefficient,
(9) . .
retardation = 0:06709 c*; P = weight of shell in kg,
for v = 205—240 m/sec, 8 = air density in kg/m?,
) — 0
retardation = 0°05834 cv?; g =981,
for v = 240—0 m/sec - t2a constant, taken =1,
retardation = 0:014 ¢cv2. 8 also constant.

These solutions were compared with the most important methods
of approximation employed during the last 70 years (excluding the
graphical methods, and those belonging to the first group, such as
Bashforth for instance, and others). .

These methods are characterised by the following differences :

£,

1. o'=ry=1; so that u = av cos 8, and then a=- ;
a tan ¢

£ (¢) = tan ¢psec ¢ + log tan (7 + 4¢),

(employed by Didion, Siacci 1880, and N. v. Wuich; but with
different laws of air resistance).

2. Calculation of the trajectory in two parts: for the ascending

branch, c =y = l, where a, = ﬂi)—, for the descending branch,
o tan ¢
g=r= l, where a, = £(w) , w=acute angle of descent (Didion,
oy tan

Mayevski, Siacei 1880, v. Wuich).
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202 Modern methods [cH. VI

g2t

3. a=ry=—i-, where o = (Didion, Mayevski, v. Wuich).

2
o+
2«

4. o=y =%, where a 1s the arithmetic mean of the values of sec @

tan

at the point of departure, and at the vertex (6 =0); so that

a=3%(secp +1)
(St Robert).

5. a=7=%t , where a is the geometric mean of the values
mentioned above, so that a=/(sec$) (Hélie).

6. o=vy=1, so that w=vcos (simplified procedure of Siacci,
employed also by F. Krupp).

0
7. o =cosd, y=Pcos’ ,s0 that 1= o
o =cos ¢, v =B cos® ¢, so that u cos

f (Vo cos ¢ (1 tan® 8\ d0
2s1n 24 f(V,) cos 8 ) tan? qb) cos @’

where V, is defined by V= \/ o ¢
range.

This is Siacci’s procedure 1888 (Siacci IT) and 1896 (Siacei IIT);
in both these solutions the principle of compensation of the inte-
gration error is the same ; different laws of air resistance are used.

8. The same as (7), but 8=1; and so
v cos 0
cos ¢’

; and therein

B=

, and X is the horizontal

o=cos¢, y=cos’p, u=

_ - . ='vcos€
9. oc=cos¢, y=Lcos’d, and u cos ¢

as a first approximation: it is then calculated more accurately through
the relation

6f (v) | Bf (us)cos® | _ 6f (v) | 5f (vs)
B v‘cos5’¢+ vt _v‘cos3¢+ vt
0 8 (1] 8
v, = Initial velocity, v, = vertex velocity, u, = value of u at the vertex,

; where B=cos}¢

so that wu, = ﬁ(—ﬁ; F (v) is the variable part of the function of air re-

sistance, and is taken from the corresponding zone law.
With constant ¢ and 8, this is Vallier’s method (Vallier I).
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10. o=cos¢, y=LBcos’, u=—£ﬂ9: and for 8 at first an

s ¢
approximate value, 8=cos § ¢: thence the elements arc calculated,
Ty, Y, Us, Us ab the vertex, as well as u,, v;, 6, at the point (z:, 1) of
the trajectory, where the abscissa z, = 0:225 z,; then B is recalculated

from

8 [ 9f () 4‘f(ua) ] = 9f(U1) +f‘_.[(‘”n)

1, cos? 4; ugt cos? ¢ 2,4 cos® 6, vt

This is another procedure of E. Vallier (Vallier II).

11. Procedurc of Charbonnier for flat trajectories: First let
o=9=1,and u=wvcos §. Thence the acute angle of descent » and
the final horizontal velocity v,, =v,cos w are calculated. Afterwards
the calculation of the path proceeds in two parts. In the ascending
branch ¢ is replaced by ¢ (1 + 4«, tan? ¢), in which

1581

. is the horizontal velocity, v cos 6, in the path; so that in the special

case
I (v) :I
Vo — 1 Vg, = ¥, COS ¢,
Ko = [ f(’uzo) Zg 'Uoc ¢
In the descending branch ¢ is to be replaced by ¢ (1 + }«, tan® w),

where

”"’=1[“°f< )

sy

§33. All these trajectory calculations were made with the same

" shell, with the same v,, ¢, ¢, 5, and with the same zone laws as above;

the Tables for D (u), J (u), T (u), A (u), and B of Siacci IT and III, are
to be found in the Lehre vom Schuss of W. Heydenreich, 2nd edition,
Berlin 1908.

The details of the calculations are not here given; only the first
case is explained in full.

1. Ezample. Let the initial velocity v, = 465 m/sec; the angle of departure

© ¢ = 34]}§ degrees, the weight of the shell P=6-85kg, the calibre 2R=0077 m,
the coefficient of form is constant, {=1, the air density & is constant and

=1-200 kg/m3,
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First zone, from »=v;=465 to v=v,=419. Here the relation between » and é
is the following
9{1+p%
=N +p) - log [V +p%)+p]’
o (0077 « 981 1200
T 685 * 1206«

B,=tan ¢ J(1 +tan? $) +log [V( + tan?eh) + tan ¢] + LT 22) 104050,

1 'Uoz
so that at v=9,=419, we have §=0,=33°46".
We are here at the end of the first and beginning of the second zone.
Second zone, from v=v;=419 to vy=v,=375. Here v and 4 are connected by
the relation

0 v3= p=tand,

x 00394 ; log¢;=441738,

1

¥ cos?d
_(0077¢x 981 1200
T T g 685~ 1206

3;2 (tan0+ tan? 0) +By;
(&)
x 009404 ; log c;=7"79519;

. . . (6)
B; is determined, then, from the relation 8 =33° 46", v=419; and so B,=0-0170269.
When v=v,=375, we find §=6,=232°3%"; this is the beginning of the third
zone.

i : _1 _ b5 3 5
Third zone: FooF b= r <tan6+ tan: 8+ tan 0)+Bs,
— an
and there log¢;=12'64854; and at the beginning of the third zone, B;=002211.

For v=v3=295, §=0,=27°21"50": this is the beOinning of the fourth zone.

. 13 s
Fourthzone FoosT6— g (tan (/] + - tan 6) + 0 0122358 and logc,=7'58785:
and for v=v,=240, =6,=17°36"; and thls is the beginning of the last zone.
g(1+p%

; . 2=
Fifth zone: ¢ TE6310 —p I +p) —Tog[ ST ¥71’
p=tan4; logc,=596801 : and at §=0, v=v,=199-13 (vertex velocity); at § = — 15°,
»=187'91: at §= - 49°5, »==21406 (near the end point of the horizontal range).

2
The function %tan 8 must now be calculated for a great number of values of
the angle 8, and drawn graphically on a large scale in several parts, from

2
0=¢=34°37"5 to §=— 50°, with ¢ for abscissa, and 1';— tan @ as ordinate,

2
The area of the curve, y= — f 7;7 tan 8 d#, is then to be measured by the plani-

meter, in four parts. In the first three parts, one square cm represents 1:1636m,
in the last part one square cm represents 3:4907 m. The curved boundary of each
part is measured 10 times by the planimeter. At first the planimeter measure-
ment is to be carried out up to the point where #=--49"5, in the neighbour-
hood of the point of descent to the muzzle horizontal; here the ordinate ¥ is
still 34'1 m: afterwards to =0 where r=24.

As to the probable error in the determination of y, derived from the square
of the errors, this had the value % 0-139/,: the probable error of y as far as
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6 =18°17" has the magnitude £ 0739 m ; to 8220 (vertex) the magnitude +£08031mn:
and to §= —49°5, the magnitude * 1-71 m.

2 . 2
So too = is to be drawn as a fanction of 8: the integral z= —f% dé is evalu-

ated mech;mically as far as §= — 495, and also to the muzzle horizon.

The measurement by planimeter was made in 5 parts: in the first three parts,
1 square cm of the drawing sheet denoted 0-58178m ; in the 4th part, 1 square em
=1'16355m; in the 5th part, 1 square em=23-49070 m.

Asfar as §=18°17, x=27657Tm + 0288 m; up to § =0 (vertex),

2=x,=43080m+0370m;
and on to §=—49°5, x="76348 m+0-7431.
Analogous procedure for ¢:
to 8=18°17, t=10'001+000227 sec;
to =0, t=t,=17-2117 £ 0:00235 sec;
to 8= —49°5, ¢=37-0407+0°00381 sec.

In this way the calculation of this trajectory was carried out as a specimen
normal trajectory, since the probable extent of the errors of =, y, ¢ is known
sufficiently exactly, and since » has been determined as a function of 4.

The values of , ¢, y, v are found for the same angle = —49°5, according to
the various methods of approximation, as well as the elements at the vertex,
sy Yuy tas Va-

For instance the original method of Krupp lna.y be ta,ken, in which (c=y=1):

x=;(Du-—D.,o), t=Z (T,-Ty), tanf=tan ¢>— = (J,,—J

uo)a
_1/=xtan¢—§1—c2[A,,—Auo wo (Du— D)) u—vcose Uy=vyCOS ¢ ;

¢ is the constant factor in the retardation of the air resistance (and in the em-
ployment of the Tables of J, 4, D, T in Heydenreich’s Lekre vom Schuss,
_(2B)?10003

19060’ log c=1"93512).

As = —49°5, the third equation determines » and J,, the first then deter-
mines z, the second ¢, the fourth y, and the fifth ».

Finally, the calculations are extended to y=0, i.e., to the muzzle horizon, and
to.x=JX, by trial-and-error methods. (Calculation and measurement carried out
by J. Schatte.)

The 12 trajectories, found by this method, differ merely in the procedure
that is employed. The same laws of air resistance are assumed, the same calibre
2R, weight of shell P, form coefficient 7, air density 8, angle of departure ¢, and
initial velocity v,.

According to Table I on p. 207, thesc 12 tra_]ectorles can be compared in
three points: first at the vertex, where §=0; next at the point where the
descending slope is the same, 8= —49°5, lying in the descending branch near the
point of descent: thirdly at the actual point of descent on the horjzontal plane
through the muzzle, where y=0.
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2. Exampls,. P=69kg, 2R=0077m, v,=550m/sec, &=1206kg/m?,
i=1, ¢=20".

‘ In Table II the results are given for the vertex velocity »,, abscissa z,,

ordinate y,, time of flight.z,: further the elements v, #, %, ¢ for a point near the

point of fall, where §=—31°10": lastly the final velocity v,, acute angle of

descent w, range X, time of flight 7" for the point of descent, where y=0.

All these elements refer to the “normal trajectory,” and to all trajectories
calculated by the various methods for the same law of air resistance.

The measurement by planimeter for ¥ and # was made in 7 parts.

3. Ezample, as before, but with ¢¢=45° (Table IIT). Planimeter measurement
in 14 parts. ’

4. Example, as before, but with ¢=70° (Table IV),

The first zone (v=550 to 419) reached to §=69°12'56”; the second zone
(v=419 t0375) ended at §=68° 44’ 48" ; the third (v=375 to 205) at 6=66° 50’ 50" ;
the fourth (v=295 to 240) at #=63°51'48"; the fifth (v=240 and less) to
==T7°17'5"; this zone contains the vertex and the point of minimum

velocity, ¥=82398 m/sec at = —4"; the sixth zone (v=240 to 295) reached

from 6= —"77°17' 5" up to the end.
The summation of the values of dy by planimeter was carried out in the
ascending branch in 21, and in the descending branch in 18 steps: and for

2
abscissa, 8, the scale was 1° to 6cm ; for ordinate, % tan 4, 1000m to 5cm.

Summation for # in 15417 parts, to the same scale as that of the drawing.
Summation of the ¢ values in 34+ 30 parts; scale of abscissa, 8, 1° to 6 cm ; scale

. v
of ordinate, ———, one second to 5 cm.
gcosé

This example was chosen for ¢p="70" because the Siacci 8 tables in his
Ballistik (1892) extend from an initial angle of 60°, and this was extended
to 70° in the Lehre vom Schuss of W, Heydenreich (1908, Tables p. 32): and
therefore the application of the method to such steep trajectories was obviously
considered.

Two other examples were worked out, relating to the same initial velocity
v,=550 m/sec, but to shells of greater weight.

5. Erample,. P=41kg, 2R=015m, §=1206, i=1, ¢=45°; planimetric
- operations in 1047 parts. Minimum velocity, v=189-49 m/sec, was at 6 = —12°30’,

6. Ezxomple. P=82kg, v,=>550m/sec, 2R=0-21m, §=1-206, =1, ¢=20°.

The corresponding series of figures show that the accuracy of
the “normal” trajectories is satisfactory.

Comparing, however, the different methods of solution, contained
in 2 to 12 for the range X, final velocity v,, angle of descent o, time
of flight T, height of vertex y,, &c., with the corresponding figures
of the “normal” trajectory 1, and expressing the difference as a per-
centage of the normal trajectory, we find for instance in y, an extreme
error of 13¢/_, and in the range of about 29 °/, with ¢ =45°; and so on.
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Poix()it olf Trajectory with constant down- Point
. ward slope 8= -49°"5 of the tangent; | of descent
Vertex of the Trajectory point in the neighbourhood of the point
TABLE I of descent in the descending branch y=0
Nature of solution Vertex Vertex | Vertex Time Velocity | Abscissa | Ordinate Time |Totalrange
velocity | abscissa | ordinate | of flight
v,inmfsee | z,inm |y, inm | ¢,insec | v m/sec zm ym t sec Inm
. 199-13 | 43080 | 1754'8 172117 | 21406 | 76348 | + 341 | 37041 76638
1. Normal solution ... £0 | +037| +080| +00023 +0 | +074| +171| £00038 | *07
2. a=§(P):tang ... 2025 45904 | 18786 17-727 2217 | 80015 | 41002 | 37-804 80852
3. Ascendingbranch a=§£(¢):tan ¢
Descending ,, a=§(0):itane| 2025 4590-4 | 18786 17-727 2157 | 78939 | 417561 | 37477 8040-0
4. a=¢ (‘1’;——”) s tan (9—;—"’) — — — — 2164 | 76247 | +1132 | 36867 | 77190
b, a=}(secp+1) . 1988 44457 | 18252 17-431 2180 | 77386 | +1105 | 37-154 78296
6. a=./(sec¢) 199-4 44671 | 18333 17:480 2180 | 77791 | 41081 | 37261 78692
7. Siacei I, simplified | 2114 495636 | 20104 18-441 2307 | 86563 | + 842 | 39-351 87270
8. Siacci Il & III; Bfrom the Table | 203-3 453256 | 18644 17-599 2309 | 81225 |- 567 | 38256 80907
9. The same, 8=1 . 197'6 43452 | 17879 17-222 2227 | 76995 | + 226 | 37143 77181
10. Vallier I ... 1925 41879 | 17266 16-888 2146 | 73327 |+ 830 | 36:180 74040
11. Vallier 11... 1995 44056 | 18134 17-344 2268 | 78392 |4+ 03| 37504 78395
12, Charbonnier 2044 4748'5 | 19413 18-046 2101 | 79859 | +295:8 | 37547 82240

(vy=465 mfsec, P=0685kg, 2R=007Tm, 8=1200kg/m? i=1, ¢=341}).
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TABLIS 1T

Naturoe of solution

Vertox of the Trnjectory

Point of T'rnjootory (0= ~31° 10"

noar tho point of doseent

Polut of descont (y=0)

v, in mfsos [x,inm|y,Inm| ¢, In roo v x i ¢
, . o (38783 8632 V17O [ 0.0 68104 | 4407 25203
1. Normal solution 2548 +034] +02| +000050 222:60 +£01| +03| +000003
2 am§(h)itandg 2648 3010°6) BGHO) 11831 |220:2 (0883740627 254300
3 am¢ §¢) ttang
amé(w)itanew .. e 2548 3010:6) 8650 11'831 2220 |G8180| 4035 25228
4, am¢ (¢ ) tan <(/)-:-m) 2523 38606 85G'H! 11747 [222:2 [6776°1|4060'2] 25°082
b amg(s00p+1) 2563-1 38857 8604 117774  [2228 [6810°7| 40707 25162
0. a=/(s00¢h) 2032 3880:H] BHD°3| 11777 |222:8; |0814-1| 4070 257161
7. Mothod Siacei I,simplifiod | 2684 [3096:4| 870-1| 11067 [2271 [70420]+44'6] 25608
8, Siacci IT and II1: 8 from
tho Tabloe . 2570 1003-G( 88681 11054 [220°6 |7001'0| +42:0| 20°042
9. The samo, =1 ... 252:0 3874:2) 8603 | 114750 |2233 (0700°7| + D876 26116
10, Vallier I ... 2621 388831 86341 11773 (2230 |G8167|+ 070 207158
11. Vallior IL... 2600, [38562:G| 866:0, 11714  [222:1 [G744°7|4607| 25030
12. Charbonnier 2664 39460 869'81 11879  1221°8 16890:4| +04'2] 25313
(rym 850, Pu@y, 21=0077, 3m1200, (=1,

v, w N

2228 | 31° BH"2 G120 26

224G, 32°  73{606GO2| 25

2223 | 32° 23 [0N18'¢] 25

222:6 |32° 1076 |0860-7| 25
2233
293-3,( 32° 114

2270 |31 670

300131 26
7114:2| 25

2200
2238
224:0
222'8
2210

31° 63"06(7120-3| 20
32° 11868860
32° 10060084
32° 16"6(06842°1
32° 2

w207,

32° 12"6|6503:0] 26

VU

G13,
742
831

h72

641

038
80

80
26310
26610
25510
6ouh-8| 25

868

m————_h

80¢
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TABLE 111

Nature of solution

Vertox of the Trajectory

Point of Trajectory (0 = = 62° 10)
near the point of descont

P'oint of descont (y =0)

veinm
1. Normal solution ... v | 1686
2. amf(P)itand . . . [ 1730
3 a-f(r[;g tan ¢, ascending bmn(,h
am € (w): tan @, denconding 1739
4 a-g(‘L::-u>:mn<l’-; ) 164
b, ampmech+1) .. v | 1686
6. ama/(sec o) ... v | 17072
7. Biacei's method 1, simplified 1886
8. Hincei ITand 111 : 8 from tho Table | 1726
). Tho same, =1 .., 1691
10. VallierI ... 1623
L Vallior 11 o o v | 1612
12, Charbounicr(flat trajectory mothod)| 1746

T nm

4776°1
+0:31

H3H3

H393

1013

n109)
D181
0203
H18H
6040
4764
40684
H(80

y,inm

20000
+0900

32004
32094

3040:D

3139
3187
3780
3213
3117
20n2
2012
3491

(vymeB00, PaGD, 20=0077, 31200, tm],

t, in Bee v & ¥ t T w X
21:63 ao.r | 83780 4767 2y 2° 100 .
+0:0011 2200 +057 0 +0-0020 22006 |62° 10" |B378D
2207 | 2487 | 0184 41748 | 4982 |¢51°8 10627 49"7| 0270
2297 | 2327 | 8016 +470'8 | 4870 2448 [01° 32"6| 0154
2180 | 2371, 8311 42100 [ 4740 [ 2124 [63° 11"3]| B8
22:30 | 2420 | 8OB7 | 410930 | 4840 [216'D |63° n'D| 8786
22449 {2444 | B3| 41001D | 4880 | 2188 |¢3° 4B 8032
24°80 | 2070 | 10688 | + 1G04 0380 2711 |62 h0™3| 10774
2241 {2020 M73| -1342 | 60Ol [20680 |G1° 30 0100
22:12 | 204°6 | 8840| —~ 731 A00) | 2628 | 61" hO"R[ 88013
21:4h | 241°H | 8217{ 4 704 47°14 | 2130 |62° 327 | K2h0
2130 [ 2381 | 8063 41037 | 46:G8 | 2400 |02" 41"4| 8116
2301 —_ -— 0207

Mothod of division into nres;
cnleulntion in 4 parts

hmdd’),

e
—_
1767
5060

6100

4830
1028
470
0450
4040
4870
A7'H0
4716
6030

[ee§
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. X Point of Trajectory (6= —78° 44 . -
TABLE 1V Vertex of the Trajectory near the point of descent ) Point of descent (y=0)
Nature of solution =
Vg x, Yg tg v T y t v, w | X T
. 5. |2912°0/4831-9 2776 <10 92323 + 353 6160 . 78°  [5239:3] 6170
. Normal solution ...| 826 +£0-13] £0°11| +0°00024 251-7 +£0'17| +0:22 |+0:0004 2534 4737 |+ 0:17| +0:0004
. a=£(¢p): tan p=1-7777 w1 895 |4135°2/6976G] 3318 | 2088 [(7276| +1394 | 69-50 |328-8 |80°119!6982:1| 739
3. (a) a=§&(P):tanp=1"7777
(b) a=£(w):tan @=2-8013 ... | 895 [4135-2(6967°G] 33-18 259462696 +24595] 6330 | 312'9 | 80° 402 (6749'3] 750
w=t(5%):on (%)
=2-1388 . | 81°0 |3420-3{58174| 3024 2715 155563 | +11505| 63-00 |[300-6 |80°17-15778'6| 670
a=4%(secp+1)=19619 ... | 850 |3754'1(6358°1 3172 284-1 {6095 |+1306 66:00 | 3141 [80°15"9 (63380 705
a=,/(sec $)=1-7099 ... e | 91°8 14242:1|7197-8) 3362 | 3046 {6974 |+1391 70°70 Tables do not apply
Siacei I, simplified ... . | 111°7 |5619-6)9015 39-21 Tables do not apply
Siacei IT and III: B8 from the
Table=1°519 82:3;|32706|5561-3; 29°55 2097 |5689 | +1575 | 64'50 | 303-7 |78°556'9 (57213 651
. The same, 8=1 | 91T |3876°4(6499°5] 3229 3488 |7009-4{ — 606'5 | 72'20 | 3349 [78° 716883 70-3
. Vallier I, 8=1'9391 ... ... | 769 |2045'4]15049-8] 2796 272:3;{4989°7| + 537 60°01 | 2857 | 79° 276|5089°6] 620
. Vallier 11, 8=1-9953... ... 1 762 [2908:7/4994-8| 27°78 2692 [4911°1| 4574 5959 | 2837 [79° 317 {50190 616
. Charbonnier ... Flat trajectory method not applicable
(2,=550, P=69, 2R=0077, $=1-206, i=1, ¢="T0°.
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§ 33] of calculation and their accuracy 211

These errors arise entirely in the procedure of integration, and
can be very serious,

So far as the ballistic quantities are concerned, by which the
merit of the system of calculation is to be measured, we may assume
that the total range X and the height of vertex y, are those that
serve best; because these are the most important quantities in
practice, and moreover exhibit the greatest percentage of error, the
trajectory being very “susceptible” to change in regard to range and
height of vertex.

This susceptibility is much less in respect of the angle of descent
w: thus for example, when 2R =77 cm and ¢ =45° (Example 3) the
absolute values of the w errors according to the successive methods
are 11, 38, 16, 1'5, 1'5, 11, 1-1, 0-5, 0-6, 0-8 per cent.; and at
¢="70°18,37 19,19, — —, 02, 09, 09, 09 per cent.

So too the numbers for the time of flight 7, at ¢ =45°, give the
following differences with respect to the “normal” solution: 62,70, 14,
34, 43, 14°3, 36, 0'2, 0'3, 1'1 per cent.; and for the final velocity v,
for ¢ =45° and 2R =TT cm, respectively 97, 67, 56, 76, 84, 184,
12:8, 101, 6°1, 50 per cent.

On this account only the percentage errors for the total range X
and the vertex height y, will be worked out for the different methods
of solution, and from this will be found the average percentage of error,
that is the sum of the absolute values divided by the number under
consideration (n =26, or 5, or 4; some do not allow of calculation,
because the Siacel Tables, in Lehre vom Schuss of W. Heydenreich, do
not go far enough). ’

This method of averaging is suitable to the case, becanse in practice
the same formulae are mostly employed for very different values of
angle of departure and weight of shell. (Obviously, instead of the
average error, the mean quadratic error can be employed as an abso-
lute measure of the mean error.)

On this account the method of Vallier (France) is better than the
others for adjusting the errors of integration; and then follows the
Wuich method, employed in Austria, which represents a slight modi-

. fication of the Didion method.

But the simplified method of Siacci I with a=1 is quite useless,
concerning which P. Charbonnier has correctly remarked, that it must
always give too long trajectories: it is seen that on this method, with
an angle of departure 45°, the range will be 29 °/, too long.

Both modifications (Vallier I and Il) of Vallier’s procedure are

14—2
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about equal in accuracy. In practice the simpler formula of Vallier I
will be taken, and 8 is then calculated from the equation

B{Gjiv('li'i)"l'5 f?f”:s)} 2¢ 6f( 0)Secs¢+5(1 )\‘y‘)f(’l)g)

v, the initial velocity, v, the vertex velocity, u = vccos 6

os ¢
¢ angle of departure, f(v) the part of the expression for the air
resistance which is a function of the velocity » of the shell; v,
vertex height; and the function 1 — Ay, in place of 1 represents the
alteration of air density in consequence of the height, A = 000008
according to St Robert and Vallier, A = 000011 on Charbonnier’s
calculations.

Compared with the Siacci B table, which is more convenient for
use than this formula for 8, the formula has the advantage of genera-
lity, and of greater accuracy.

In the employment of this formula even with very steep high angle
trajectories, the error can still be kept within moderate bounds. With

=500m/sec, 2R =37 cm, P =680 gr,7=1, §=1-206 on the ground,
¢ =80° the trajectory was calculated planimetrically, taking into
account the alteration of air density; it was found that

=35712m, v,=3451 m/sec.

On the other hand, a single application of the formula gave
Ys=4164 m (error of 16°/)), v,=34"4m/sec (an error of 0:3°/,).
At ¢ = 75° the normal solution gave

2, =15181m, y,=343956m;
while the formula gave
w0 =1742m, y,=4138m.

Usually in practice the formula for 8 will be employed for an
angle of departure not exceeding 50°.

The result can be expressed in the following manner:

The best value of 8 is found when the ballistic coefficient ¢/, and
the 8 implied in it, are determined experimentally; this is the case
for instance, when, besides v,, ¢, (2R, P, 6 and ?), the range X or the
time of flight T, or the final velocity v., or the angle of descent w is
known and thence ¢’ is determined.

But then in all cases, where we must obtain the 8 value theo-
retically, the greatest accuracy is obtained on the average, if the
Vallier system of formulae is employed.

; Ug = VySec ¢,
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Still this conclusion is not necessarily true in all cases, because
the number of calculated normal trajectories was not very large:
moreover the conclusion relates only to initial velocities of about
500 m/sec: and Siacei has calculated his 8 tables, in 1892 and 1896,
on the basis of the same integration formula, but with different
methods of approximation.

It is desirable then that other calculations with different zone-
laws, different initial velocities, and different weapons, should be
carried out, and also with different methods of calculation, especially
those of Sabudski, Charbonnier, Siacci-Parodi, and others.

§34. In this way the best methods will be discovered. But we
must now consider the choice of the most appropriate law of air
resistance.

In 1909 the only modern laws were: the Laws of the Zones of
Chapel-Vallier-Hojel (Law I), the Zone-Laws of Mayevski-Sabudski
(Law II), and the new monomial law in Siacei IIT (Law III).

The method of test is the following: the calculation is carried out
by the best method on the basis of the three different laws of air resist-
ance: the calculated ranges are then to be compared with the observed
ranges.

Given then the initial velocity v, m/sec, the weight of the shell
Pkg, the calibre 2R m, the air density & on the ground, the form of head
(ogival, two calibre radius of rounding) and the ¢ angle of departure.
Thence the range X is to be calculated. This was done with
the formula of Vallier, viz,, Vallier II. In the first place 8 was put
=cos § ¢, and thence w,, v;, y,, as well as 2, ¥, w, v, 6, were
calculated; then the formula Vallier II gave a closer value of 8.
Then we must consider the diminution of air density with the height,
because.we have now to compare the three laws of air resistance with
the actual air resistance, which varies with the air density as it changes
with the height.

Then 8 will be calculated from

B l:9 f% sec?¢ + 4'—’[—1(?—) sec? ¢]
=1 [9%(1 —Ay,) sec® 6, + 4.<f—v(lj’—)(] —hys):l,
1 3
and A is taken from Vallier's value: =1 is assumed in Laws I and IT;
but in Law III, according to Siacci, ©=0'896 for ogival shell. of
2 calibre rounding.
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The results of four such calculations are given in the following
Table, in which ¢ lies between 6° and 36°.

Range X in m i obselE'Ztion' Error
error in m pircentage

Calculated according to Law  1: 4061-2 —49 -12
» » 5w 11:40492 - 61 -1

" ,, w s I1I:41730| 463 +15
Calculated according to Law  1:4919°1 —-92 ~-18
" N w o I1:4959:1| —b52 -10

” " » g II1:50648| 454 +11
Calculated according to Law  1: 63697 -78 -12
” ” » 5 I1:6472:% +24 +04

,, " w5, III:6596:4| +148 +23
Calculated according to Law  1: 76694 —156 -25
» " w o 11:77732] --52 —07

. . w o IIT:787031 445 +06

In these examples, the results of those worked on the Law I of
Chapel-Vallier-Hojel required to be increased (assuming the accuracy
of the observations), but on the Law III of Siacci, the results gave
ranges too great.

The results are not so very different, and the errors are relatively
small.

We have to reckon with an error arising from the integration
procedure of 56°/,, when the calculation is made on the system of
Siacci II (Lehre vom Schuss of Heydenreich); so that in this case the
error, arising from the 8 Table, was greater than that arising from
the air resistance law.

The choice of the law of air resistance in the three specific instances
1s possibly of somewhat slighter importance than the choice of the
system of calculation. The three laws of air resistance are good enough
to employ in practical work; still they need improvement.

An improvement can be reached as a preliminary, when something
else is chosen for 7 instead of unity, in Law I, as well as in Law III,
for the normal shape of shell.

The problem with the 8 of Vallier can thus be solved on the basis

-
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of Law I as well as Law II, and the mean taken; later on, however, the
question of experiments on air resistance must be considered.

Itemark. Tho preceding holds merely for guns of the calibre mentioned. The
statement is not to be considered to hold good for rifle bullets. The caleulations
relating to such cases have not been attempted, as no experiments are known to
the author, in which the valucs of ¢, vy, X and 7 are trustworthy (for ¢ especially,
in consequence of the error of departure and jump).

As soon as the new Krupp-Eberhard values of air resistance (§ 10) are used
for the eonstruction of the primary and secondary functions, it will obviously be
desirable to use them for such problems.
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CHAPTER VII

~ The high angle trajectory. The method
of swinging the trajectory

I. CALCULATION OF A HIGH ANGLE TRAJECTORY. VERTICAL FIRE.

§35. Motion of a shell in a vertical line.

Suppose a shell projected from .0 with initial velocity v, vertically
upwards; the velocity of the shell, under the influence of gravity and
air resistance, will diminish more and more, and after a certain
time ¢ will be zero; and the shell will have rcached its maximum
height Y.

After that it begins to fall again with a zero initial velocity; the
velocity increases and approaches more and more to a limiting value
v, determined by the equality of air resistance and gravity, so that
the movement tends to become uniform. On the other hand, however,
the velocity of a meteoric stone, starting from space with very much
greater velocity, over 30,000 m/sec on the average, and penetrating
the atmosphere and striking the Earth, diminishes much more and will
approach such a velocity v; as an inferior limit.

Before the shell can reach this superior limit », of its velocity, it
strikes the ground again after ¢, seconds, reckoned from the highest .
point, and its fall is ¥ and its velocity may be denoted by .. '

The motion of the shell must be calculated separately for the ascent
and descent, as these two parts of the motion are not symmetrical: on
the contrary in the first part of the ascent, air resistance and gravity }
act in the same direction, both retarding the motion; in the second part
of the descent, air resistance and gravity act in opposite directions,
the air resistance retarding, but gravity accelerating the motion.

Ascending Motion.

Let the coordinate y be reckoned positive upward from the
origin O.
Suppose the shell to have reached a height y above O after ¢!
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§ 35] The high angle trajectory 217

seconds, and to have velocity v; denote the retardation of air resistance
by ¢f (v); then the differential equation of motion is

%:—g—cf(v), ........................ @
and thence
v dv
t= —fvn ;—fT('U) ) sesssassessserarasens (2)

from which the velocity v can be calculated after any time .
The whole time ¢, of the ascending motion is given by

% dy
t1=+.{om. ..................... (3)

When the value of v = % is obtained in (2) as a function of ¢, and

integrated again, from ¢ = 0, y = 0, the value of the instantaneous y at
any time ¢ is obtained; and substituting the value of ¢, from (3), we
get the maximum height Y.
The variable in (1) is changed from ¢ to y by the relations dy =v dt,
dv

vﬂy=—g—cf(v); then

v vdv
y:—f%m, ..................... (4)

where » is the velocity at any height y of the shell above the ground;
then

% ydy .
Y= +’-0 m) 3 esetesessieereseranas (D)

giving ¥, the maximum height ascended.
Tables are given in Volume 1v, for the whole time #; of the upward motion,

and for the height ¥ of ascent (Table 17); these were calculated on the assumption
of Siacci’s 1896 laws of air resistance, Here

Lu=MH0)-M(w), Y=(0)-@Q();

where M (0) is the value of the function A/, as shown in the tables, for v=0:

M (vo), ©(0), @ (v,) denote similar values of Af and ¢, and the ballistic coefficient
¢ is defined in Volume 1v, as

_@RPO.8%
- 12064 '

3 the average air density, in kg/m?®; and diagrams for the functions 3/ (v) and
Q(v) are given in Volume 1Iv.
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218 The high angle trajectory [on. viI
Ezample. Given ¢c=4,v,=700m/sec. Taken either from the Tables, Volume1v,
or from the diagrams:
M(0)=1821, M(vg)=052, @(0)=2850, Q(v;)=480,
s0 that 8, =18'21 - 052 =177 seconds,
¥ =2850 — 480=2370 m.

Descending Motion.

The coordinate y is here reckoned from the highest point O,
downwards, and then

dv v wvdy
V=t 0) y_fog_—cf(—v), ............ (6)
% ydy
Y=+ f e 7
RO @
thus the velocity of descent is given after Y has been calenlated
by (5). :
Moreover
dv v dy
Bty 0) t—fom), ............ )
and
ve  dy
A s erererereneeneaea 9
= =v® ©

giving ¢, the time of descent.

An elimination of v between (6) and (8), or another integration of
the equation (6), will give the instantaneous distance of the shell from
the ground, after any time ¢ in the descending motion.

If a law of air resistance is assumed, giving the retardation cf (v}
in a monomial form cv®, and = is an integer, the integration is at once
possible. When zone laws of this monomial form are assumed, the
integration must be carried out in each zone. When an analytical
formula is taken, of which the integration is not possible in a finite
form, or when the law is expressed graphically in a tabular form, it .
is convenient to employ the Abdank-Abakanowitz integraph, or a .
planimeter. '

Diagrams are given in Volume 1v, for finding ¥ from equation (7) and 2, from
(9), for the values ¢=0-1, 0-2, 05, 1, 3, 6.
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§ 35] The high angle trajectory 219

Assumption of the quadratic law, ¢f (v) = cv”.
(For ¢ and the value of K consult §10.)

The results are as follows:

1. Ascending motion from initial velocity v:

v ,\/ 'g cos (tVge) — sin (tVgc)

v= - ) eernrensaias 10)
vo ¢ sin (tVge) + \/9 cos (tVgc)
J——log [cos(t\/gc)+vo\/J sm(t&/g—c)], ......... (11)
tan (t,Vge) = v, \/3, ..................... 12)
cv
. - Y=—lo 1+ ) .................. (13)
g(1+%
. for the maximum height ¥ ascended.
t 2. Descending motion, starting from rest:
t=—=
2\/90 Og /\/g jesssserarsesaansoscrnnne (14‘)
2
- Zt\/gc
1 or v=\/c Z“gc \/gth (tVge), -..... (14a)
)
: tNge —t\Vge
1 +e 1 — .
y=7 log 3 = 59355, log ch(t¥gc), ...... (15)

giving the downward descent ¥ in tnne t from rest.
From (14) and (15),

v= Jg Y0 R (16)

the velocity » acquired in falling through y;
ta¥ge | —tVoe

1
2 ~ 04313 ¢

Y= % log log ch (t:Vgc), ...(17)
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220 The high angle trajectory [oH. VII

which determines the total time ¢, of falling, when ¥ has been given
by (13); and

Vo= \/%th (EaVGO), wveerreeerrinnerenn(18)
for the velocity of fall v,.

8. Descending motion with initial velocity of project%on Vp!

1 ¢ - —_—
Y= 5a3a30 8 [”0\/ % sh (¢ Vge) + ch (¢ N/.qc)}, .(19)

for downward descent y after time ¢

Tables for the hyperbolic functions, sh, ch, th, are given in:
W. Ligowski, Tables of hyperbolic and circular jfunctions, Berlin,
Ernst and Korn, 1890; also in E. Jahnke and F. Emde, Functionen-
tafeln, Leipzig, Teubner, 1909.

Consult § 10, for the value of ¢ for air.

1. Ezample. A bullet with sectional area 052 x 10~*m?, weight 0-01 kg, is
dropped in a vertical line from a height ¥'=2600m, from rest, in air of mean
density §=108kg/m?; and ¢=00039, g=9-81.

The time of falling #=>56 sec, and the striking velocity »,=41 m/sec, from
formulae (17) and (18).

2. Ezample. Shooting vertically downwards in water. According to § 9,
2.
c=7\—£Pﬂ-'—8 , where RZr is the cross-section in m?; 7 is the weight of the shell
in kg, & the weight in kg of one m? of water; A is a numerical factor to be
determined experimentally, depending on the form of the shell, the state of the
water, and the velocity.

Take P=14 kg, R?r=0'025 m?, §=1'050 kg/m3, A=0°3, and let the shell start
from the surface of the water with the downward initial velocity of =150 m/sec.
What is the depth reached by the shell in £=01 sec?

By formula (19) the depth reached will be about 7 m.

Explanation of the preceding equations.

The differential equation — olt=¥'llv-2 leads at once to

gte

”\/2'”\/cj
g Ny,

»

- I\/g_vé:tan‘l

¢
14+-v,2
7 o

. atp
ne tan—! —— =tan~lattan-!
or, since 1748 at B,

equation (10) is obtained by solution for ».
Then if Q7=£ld% is integrated again, the relation (11} follows. Put »=0 in (10),
and then £=¢;, as in (12); and then y =Y in (13).

Digitized by Microsoft ®



§ 35] The Ligh angle trajectory 291

Moreover, the equation g§= g—c? is easily integrated by a resolution into
partial fractions, and then (14} is obtained, or (14a) when soclved for ». This last
equation, with v—z‘y , integrated again with respect to ¢, leads to (15); and to

(17) and (18) for the point of fall.
7,2 0

In a vacuum, where ¢=0, Y=(9) = 2g° ) Be=3= =gts, and so on.

Remark. The purely academic question is often proposed, as to whether it
is possible for an ordinary shell, fired vertically upwards, ultimately to leave the
Earth, provided the initial velocity is made excessively high.

This question cannot be answered without further examination, considering
that with the velocity of the shell the resistance of the air also increases.

Consider, as an extreme case, the problem of a small sphere of elder pith or
of down, projected vertically with enormous initial velocity ; here anyone would
find it reasonable to suppose that such a body would not ascend to an infinite
height, becauge the air opposes a very powerful resistance to the motion.

Assummg the cubic law of resistance, ¢f(v)=ci?, the time ¢, at which the
body is for & moment at rest, at its maximum height ¥ of ascent, is given by

t_fvo dv Y—fvo vdy
o gta® T Jo g+e

When ¢, =+ and Y=¢, for the case of yy=c0,

- f Tl f ? vy
“Jog+ed *T fo gtoer®’
and the question is whether these values are finite or infinite,

To calculate 7, divide the integral into two parts: the first reaching from v=0
to any assumed finite velocity ¥, and the second from »= V to v=u, where % after-
wards is made to tend to a limit «o. Then

_ j’ Vv dv + % dy
- og+cv3 Vg+c”3 u=oo.

Here the first integral is always finite, because V has been assumed finite.
In the second integral, divide numerator and denomina.tor by 3, and employ

the first law of the mean, as is allowable, since 273+¢: and 55 are finite, and — does

not alter in sign.

Denoting by A the mean value of 1 between v=V and v=w, then
o+
w v
j’Vdv W_/Vdv *<1°°
0 g+er g 0 g+ = ”2)1’
v osTe
Vo dv 1M
0§+cv3 2 VZ
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292 The high angle trajectory [cH. VI

Here J/ is finite, since in & Ste the velocity » varies between ¥ and o, and so

M lies between the two finite values and %: thus = is finite.

g
Ve

In a corresponding way,
S SN
“JogHerr Jogto® g
vate
v
=2

[V wdv ( ‘) ¥ vdy
“Jogter” 0 g+cv3 V
It can be proved, with the monomial law ¢v™, that if » >1, = has a finite value;

and if #»>2, § also has a finite value.
The maximum height £ that a shell can reach, and the corresponding time = of
the ascent, have been calculated by St Robert for the law of retardation

cf (v)=cv? (1 +§’v) H

and he finds for §,

ML by
(3g+c)\2) £=log \/[9 Gt 40)\2)] 1r+s1n 2 \/ b)\{]

where X is given by the cub:c equation BAS — N2 — -g=0.

For an iron sphere of weight 12 kg, in air of density 8§ =1-208 kg/m3, and with
g=981, ¢=0000374, b=0-00000086, it was found that A=483'63, r=1924 sec,
£=23966 m, so that the shell would not reach a height beyond that of Mont Blanc.

St Robert then took into account further the diminution of air density
and gravity with the height. As the calculation led to a somewhat complicated
differential equation when both influences were taken into account together,
St Robert calculated an upper limit # for &, a value H that must always be greater
than £, in the following way:

The motion is supposed to be divided into two parts, and the assumption is
made that in the first part the resistance of the air alone is at work, without gravity :
in the second part, gravity alone is at work, but not the air resistance.

The first part reaches from vy=cc to some arbitrary finite velocity »;, and the
corresponding height of ascent is denoted by £;,. The second part reaches from
», to #=0, and the corresponding further ascent is 4y, Thus H=/4;+ %, is always
greater than the true value of £, the height that would be reached when air
resistance and gravity are acting simultaneously.

The motion in the first part requires the differential equation,

dv__dv - :
ik i —cf(v)e B0, F(r)=co? <1+Ev)’

as the air resistance alone is assumed at work, and at the same time the baro-
metric influence is taken into account.
The integration from v=c to v=2,, and y=0 to y=Ay, gives

¢
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§ 36] The high angle trajectory 293

In the second part, where gravity alone, on Newton’s law of gravitation, is
actinug, the differential equation is

dv dv r \?
= @G~ 9 (7_'_+T7/> !
where = 6370000 m, the radius of the Karth : and this gives (since for v=v,, y=4,
Yy= y=h 3
and ¥=0, y=A; +1y), v (r+ I}
. 2gr=vt(r+hy)’

On the same assumptions as before, and taking the given value #,=175 m/sec,
it is found that A,=4248 m, A;=1564 m; thus the height £ is always less than
H=h1+hy=5812 m.

Higher than this the shell can never fly, however great the initial velocity may
be made.

The author is of the opinion that calculations of this nature are inconclusive ;
becauso the law of resistance employed by St Robert is purely empirical, and is
a law based on experimental velocities up to about 600 m/sec; and an extrapola-
tion from »=600 to v=0o is not permissible.

In fact we may say that nothing is known of the resistance of the air at in-
ordinately high velocities of the moving body.

/Lg =

§ 36. Shooting nearly vertical. Use of the
auxiliary functions.

The following procedure relates to the case, where the angle - of
the tangent of the trajectory with the vertical remains so small that

in the expansion of the series for cos Y and sin,
,‘l, 3

cosyr=1-— o7 +.
only the first term need be retained; the whole of the ascending
branch does not come into consideration, but only the nearly straight

part.

A. High angle firing.

Let P (xy) be any point of the path, reached after a time ¢; v the
velocity, ¢f (v) retardation of the air resistance, =347 —8 the
inclination to the vertical of the tangent of the path, 4, the initial
' angle, and v, the initial velocity.

Since cos Y = sin 6, sin y» = cos 8, dyr = — d, the general equations
of §17 become

d (veos ) =— gdt — cf(v) cos«[rdt, ............... 1)
d@siny)=—cf@)sinydt, ..coovviniiniininina.. ®)
gdz =+ vdy, ...... e rreeeiueeeireeraeeianaas 3)
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224 The kigh angle trajectory [cH. VI

gdt=-+vcosecYrdir, ..ocviviniinnn.. ()]
gdy=+vPcotyrdy, .oooiniiinin., (5)
gd(@siny)y=—cf(W)vdyr,.cccoveiiiiniiiiniann. (6)
and thence, on the assumption above,
dv
dt=— -—0 .
g +ef(v)
Integrating from ¢ =0 to ¢, and from v,= 0 to v,
v dy

f=— Lﬂgﬂ_ﬂ LR (O m— (1)

where

o) = (1200 dv
O=], v (v0)= f +cf('v)
Moreover, from (4)
dyp_ di____gdv
¥ 0T Tl
Integrating from +r, to v, and », to », the instantaneous slope‘ of
the tangent is obtained

_ Y G ()
F=TE Gy s (8)
where, in our notation,
G ('U) = eN("-’), G( ) =¢ J\"(’Un)

20 gdy 1200 d
Yo-[ gtamy o=l spt e
Equation (3) gives

7 _ R4 G('u)vdv
IS~y g o " BP0 PO O)

where

120G (v) vdv 1200 @ (W) v dw
P f P(w) = :
©=), svg® "L, g+ aw
Finally the altitude y of the shell above the horizontal through
the muzzle is given from (5),

_vdy gudvy _
gdy'— ‘l" = 9+Qf(’lf)’ y"Q('U)'—Q('Uo)»

where

vdv 120 ydy
W= T =]
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Statement of results. Notation.
Time of flight i
t= M (v)— M (v,), M= f g+ cf ()’
Slope of tangen; G (v) = ¥
(v
V= \Iré (%) N (@)= f o _gdv
Abscissa of trajectory o g+ ()]
10 G (v) vdy
= g PO -P @) OBy e
Ordinate of trajectory 0 = flzoo v
v .
y=Q ) - Q). g+ @)

Meaning of the notation : z,y the coordinates inm of a point on the trajectory,
reached after a time ¢ sec; v m/sec the velocity ; ¥ the inclination to the vertical of
the tangent of the trajectory at any point, ¥, that of the initial tangent; ¢f(v)
the retardation due to air resistance; for which the formula is assumed as in
Table 12,

F(v)=02002 . v— 48:05+/[(0°1648. v —47°95)24-9'6]
010442 (v~ 300)

— o\
371+ <200)

3.1000(2R)?. 0896. 7
e= 1506 i

3 the air density in kg/m3; 22 the calibre in m; P the weight of the shell in kg;
and 7 the coefficient of form is =1 according to Siacci, for the original Krupp
normal shell with ogival head rounded to a radius of 2 calibres.

The curves of Table No. 1 (Vol. 1v) give the values of M, G, P, @,
forc=86,3,1, 05,02, 0'1; and M, and Q for the values ¢=5, 4, 2.

Interpolation is not possible in all circumstances for intermediate
values of ¢; but at least the values of ¢ given in the Table will
assign two limits for the trajectory.

When the value of ¢ is not yet known, it must be determined by
firing along a flat trajectory. A first tentative calculation will give
an approximate range +/(2?+ y°); then if the trajectory is swung
down according to the method of Burgsdorff, the corresponding value
of 7 is taken out of a Range Table for direct fire.

The special case of vertical fire is given by yr, =0.

The total height reached at y,, when y=0, and the corresponding
time ¢, for the complete upward motion, are then given by

=Q(0) = Q(w), t=M(0)— M(v).
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226 The high angle trajectory [cH. VI

The diminution of air density with the height can be taken into
account, by calculating the path in several parts: but in most cases
it is sufficient to take the mean density of the air through which the
shell passes.

B. Shooting vertically downwards.

The origin O of coordinates is taken again at the point of
departure, and the positive axis of y is drawn vertically downward.
The only alteration from A is to replace + g by g.

Time of flight
t=M (w)—M, ().

e (v)
V=Yg, )

Slope of tangent

Abscissa of trajectory ,
o= ’G‘l%) [P, (v)— P, (v)].

Ordinate of trajectory
. y= Ql (1)) - Ql ('Uo)-

) 1200 dv
Where ]‘[1 (Z’) = [” W ’
G (’U) ‘\I (v)

—gdv
v[—g+cf(@)Y
(1200 @ (v) v dv

1200
N, (1.') — {

Pl(v)=',” —————g+cf(v)’
1200 v dv
0] 5w

The curves of Table II (Vol. 1v), for M,, G, P,, @, should be
consulted.

In the calculation of this Table it is assumed that the initial
velocity of departure v, of the shell is greater than the terminal
velocity o', for which the weight and the air resistance are equal,
when g =cf (v).

The velocity will then diminish from the initial value v, and
tend more and -more to the terminal velocity ",

In the case where v,= ¢, the velocity remains very nearly constant.

The case of v, < 7' is not taken into account, as in this case the
quadratic law may be employed.
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§37] The high angle trajectory 227

Remarks.

1. With ordinary small shot the previous laws of air resistance ghould not
be employed without further examination, becuuse of the very small cross-
section and the small velocity which are to be considered, for which the usual
constants in the laws of air resistance are possibly inaccurate.

2. These auxiliary functions, which in the form above were first taken to hold
for very small values of 4, may receive a somewhat more extended application,
if in equation (1) above,

d (v cos )= — gdt - cf (v) cos rdt,
the value of cos ¢ is replaced by some constant mean value.

Denoting this by either ay, or y;, then

o dy

U= T

This generalisation is analogous to the methods of §§ 23—31, where o, and y,
were determined by an appropriate choice; the consideration of this question
will be resumed later.

For a numerical example (of vertical firc with the .S bullet), and the re-
searches of Preuss on time of flight and striking velocity in vertical or nearly
vertical rifle fire, consult notes to §§ 35 to 37.

§ 37. General calculation of high angle trajectories. Allowance
for the diminution of air density.

Undoubtedly the most accurate procedure for the plotting of a
high angle trajectory is the experimental method, making use of two
photo-theodolites, described in Vol. 111, §184. Here, however, we are
concerned exclusively with methods of calculation.

1. The several processes of §23 show how in the calculation of a
steep trajectory any one of the methods of the second group of
approximations can be employed, if the trajectory is divided up into
several arcs.

The extent of any individual arc must be chosen smaller in pro-
portion as the trajectory is more curved in the neighbourhood. This
procedure, proposed by J. Didion, 1848, is in principle the following :

The system of equations is

1 1
T = a_c(D“— D"o)’ t=E (ﬂﬁ - T"o)’
tan€=tan¢—-2%(Ju_Juo)’

1
y=ux tan ¢ — 5 [Auw— Au,— Iy, (Du— Dy))],

u=avcos 0, Up = O, €OS .
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‘228 The high angle trajectory [cH. vII

An arbitrary choice is made of the angle 6 of slope corresponding
to the end of the first arc; and then given 6, ¢, a, ¢, v, the third
equation will serve to calculate u.

The first equation then determines , the second ¢, the fourth Y,
the fifth » for the end of the first arc. The factor a is here a mean
value between sec ¢ and sec 6 at the beginning and end of the arc.

According to Didion, a= é—f}%:—i(g)e ,
$+0

according to v. Wuich a=£< 2 )
2 g . : 570

an ——

2

or to St Robert a=7%(sec ¢ +secb),
or to Hélie, a=+/(sec ¢ sec 8).

2. The choice of the number and length of the arcs, of which the
trajectory is built up, is then of especial importance.

* In order to know whether the desired degree of acturacy in the
calculation is actually reached with the arbitrary assumed system
of division into arcs, we shall calculate some trajectories (for angles
of departure, for instance, of ¢ =150° 65°, 80°) according to a
method, which has the advantage from a mathematical point of view
of known accuracy.

For this purpose the 1909 method of the author is proposed, that.
was employed in §32 in testing the different methods of solution and
their accuracy; this may be called the “planimetric” method.

An integrable law is chosen for the representation of the air
resistance as a function of the velocity (§ 17), for instance a monomial
law, giving retardation ¢v™. The corresponding Tables, Ay, Dy, Ju, Ty,
will then be taken as the basis of the calculations.

The relation between the instantaneous velocity v of the shell in |
its path and the angle @ of slope with the horizon is then given by

1 necf do
(veos @) g J(cos @)t

The integration constant C is then to be calculated, so as to
connect the zones, taking the pair of values (6,v) at the end of one
zone to be the same as at the beginning of the following zone.

The constant ¢ is given by the mass of the shell, its dimensions.

+C.
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§ 37] The high angle trajectory 229

and the shape, as well as the air density; and contains moreover a
factor, which takes different values in going from one zone into
another.

Taking the zone laws of Mayevski-Sabudski :

de
v m/sec " ¢ {cos g
dé #in @
Oto 240 [ 2 !8,.4.00140 0= oo g H A0 tan (7 +46)
i " (Vol. 1v, Table 10)
4
240 ,, 295 | 3 8. «: 005834 c_ci% =tan 8+ tan3d ,, »
) do
295 ,, 375 5 8, . a.006709 fco_sré =tand+3tan34+1 tans 4
i " p (Vol. 1v, Table 10)
. 4 6
375, 419 3 8, . a . 009404 ch-_s“‘.é= tan8+1tan3d ”
] ad sin 8
419 ,, 550 | 2 8y . a. 00394 fm=2_0(m_zb+é10gtan 3r+36)
p (Vol. 1v, Table 10)
" o o5 6
550 , 800 | 170 |3,.a.0:2616 [ (5os )40 » "
. e dé
800 ” 1000 155 ! a” .a. 07130 W“ » »
|
Rrargy . o .
Here 1506 P =% for brevity; 2R the calibre in m, P the weight

of the shell in kg, ¢ the form coefficient, taken =1 for ogival shell of
2 calibre radius of rounding; &, the air density at the corresponding
height ¥ m above the ground, measured in kg/m®

To allow for the diminution of air density &, with the height, the
calculation is made with a mean density within the corresponding
zone.

2
After v has been obtained as a function of 8, the values of %,

;—2tan 0, zs g are calculated for a large number of values of 8 and
the summation is carried out of
2 2
o==32d0, y=-3Ttan6ds, t=—3s2%
g g gcos @

with the help of the planimeter, or of the integraph.
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230 The high angle trajectory [cH. vII

The details of the procedure will be made more clear by an
example.

Example. (a) Angle of departure ¢=80°, calibre 2R=0037 m, weight of
shell P=0680 kg, initial velocity v,=500 m/sec, ¢=1 (for the choice of 7, see
below), air density at the muzzle level §=1-206 kg/m3.

1st Zone (500—-419 mfsec). The air density is assumed at first throughout
the whole zone to be the same as at the beginning of the zone, and so §=1-206.

2
* Then % - w= (0°0185)2 x x 2 x 0:0394 (0°68)~1,

log == =4-09551.
Z g

The relation in this zone between v and 4 is

1 2¢ [ df 2¢[ sin 9
(veos 6 g s T A=~ g Zoostg T HI0B n (iﬂ+§e):|+A

The integration constant 4 is given at the beginning of the zone, where
#=¢=80°, and v=v,=500; thence 4=0'0023191. At the end of the zone,
v=419, and thence = +79° 524,

2
A provisional planimetric summation gives y=—3 Z tan 6déo up to the end

of the zone, and the result is y;=264'8 m, for the ordinate y; of the end point.
This makes the air density at the end of the zone
3,=35 (1~ 0°00011y,) =1-206 X 0-9709 ;
and the mean density (arithmetic mean of values at the muzzle level and at the

end of the zone), is
8, =1206 x 0-9854.

Thence, more accurately
22— (00185 7 x 2 x 00394 X 0°9854 X (0:68) -1,
log %:Z-OSQM.

Repeating the calculation, the integration constant is now 4 =0-0022872.

At the end of the zone, where ¥=419, the corrected value § = 4 79°52':3,

By the use of the planimeter y,=26841 m (to a scale of 1 square cm of the
drawing sheet to 0097 m).

And the air density 8y, at the end of the first zone is given by

8y, =8 (1—0"00011 x 268-4)=0-9705 x 1-206.
2nd Zone (419—375 mfsec). Here
(%?3?8)73: —-—z]—c (tan 6 +3 tan36) + B.

Assuming the air density inside the second zone as constant and equal to the

amount, 0°9705, at the end of the first zone, then in the second zone

3 _3x(0°0185) x 7 x 000009404 x 0-9705 x (0-68)~1,

lo Be_ 7-63640.
s g
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§ 37] The high angle trajectory 231

The integration constant /3 is derived from the (8, v) pair of values at the end
of the first zone; that is, =419, §=79"52"3, and thence 5=0-000030237,
The value at the end of the zone, where »=375, is therefore
' 0= +179"45"53.
By use of the planimeter up to the end of the second zoue, a firat value is
Y2=17506 m.,
The air density at the end of the second zone is therefore
3, =3[1-000011 (3, +,)]=1206 X 0:95122;
and so the mean density inside the second zone is
3 (8,,+3,,) = 1206 x 096085.

The calculation is repeated with this mean air density ; and a closer value is
found of

3 =
log i =763206,
and of B=00000299618.

Using the planimeter, in four steps, to a scale of 1 square cm of the drawing
sheet to 001164 m, the cnd value of the ordinate of the second zone is

y2=176-8 m. )

3rd Zone (375—295 m/sce). In a first approximation, the end values of the
third zone, v=295, § = +79° 15”09, and thence y3=>522-29 m.

Hence the mean relative air density in the third zone is 092230 ; thence closer
values are =293, §="79° 14"33, and y;="536-20 m,

4th Zone (295—240 m/sec). With the air density prevailing at the end of the
third zone, namely 0-8920 x 1:206, the value obtained for the end of the zone is
at first, for ¥=240, §=+478°19"7; and thence ,=57515 m. At the end of the
zone this makes

By’ =8 [1 — 000011 (‘7/1 +_'?/2 +:1/3 +_"/.;)]= 8 x 082878,
or a mean density in the zone § x 0-86041.

Repeating the caleulation with this mean density, a closer value is obtained,
9="78"18"4, and y,=588'85m.

5th Zone (240—0 m/sec). At =0, the vertex of the trajectory,

v=v,=33"3 m/sec.

The planimeter gave (in six parts) a first value y=1925"8 m at the end of
the zone; and so a first value of the air density at the end of the zone 061543 ;
thus the mean density in the fifth zone is taken as 0-72133.

Repeating the calculation, a closer value is found at =0 for the vertex velocity
v, =34'51 m/scc.

The planimeter is employed again in four groups; first to 6= +78°18"4,
secondly to §=45°, and thirdly to =0 (in 3, 5, 9 steps respectively).

Thence the value found at the end of the fifth zone was y=2000'96 m. The

separate values of y, as well as of & and ¢, are then added for the ascending
branch; and the results are shown in the table on the next page.
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232 The high angle trajectory [cH. v

Altitad N Horizontalh

Slope of the itude of the | advance of the | . . Velocity of the

ta.nggnt to the [shell above the | shell from the ;.rrt:;lf t(;:feﬂ;&}:’z shell iyn the

horizon muzzle level point of trajectory
departure

8=80° y=0m =0 m t=0 sec #="5000 m/sec
79° 65’ 1850 3278 03984 4428
79° 623 268-4 47-66 05949 4190
79° 455 4452 7949 1-0486 3750
79° 30/ 7459 134'5 1-9298 3235
79° 143 9814 1786 27066 295°0
78° 50/ 1274:0 2362 37682 2665
78° 184 15703 2950 49631 2400
77° 30 1910-8 3683 65119 2127
76° 30’ 22188 4394 80917 187+7
76° 2340°'1 4691 87748 1776
75° 25372 5199 9-0780 1608
74° 2689-2 5620 11-0027 147-3
73° 28100 5976 11-8895 136-2
72° 29004 6283 126663 126-8
70° 30549 6789 13-9667 111-8
68° 315684 7187 15-0180 100-3
66° 32355 751-3 15-8887 91-2
64° 3204-1 ’ 7786 166239 838
61° 33597 8119 17-5384 749
58° 34060 839-0 18-2896 679
54° 34499 8684 191096 607
50° 3480°5 892-3 197812 55-2
45° 35073 9168 204694 499
40° 35263 937-2 210474 459
30° 3550°1 9703 21-9845 4050
20° 35626 9970 227433 3698
10° 3569°1 10200 234040 3516

0° Y, =35712 2,=1041'5 t,=240302 2, =34'51

Thence the following range table can be obtained. The slope £ of the ground
is given, on which the target is seen ; moreover the coordinates of the target, the - ';
time of flight ¢, and the striking velocity, measurod along the tangent.

E a Y ) x t v

80° 0° 0m Om 0 sec 500 m/sec
78 2 27-85 592 11-717 139

76 4 3430 856 18719 641

74 6 35696 1024 23524 350

In the table a is the sighting angle above the sloping ground.
Remarks.

1. Inmost cases in practice the calculation would be made to a fewer number of
decimal places, and the variation of air density would not be found by a double
calculation, but simply by assuming a mean value. '
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§ 37] The high angle trajectory 233

But in our case the question was to show that if the law of the air resistance
and the relation between air density and height above the ground are known
accurately, a steep high angle trajectory can be calculated by this method with

all the desired accuracy.
The planimeter employed, in the measurement of a square of 16'00 cm, gave

a probable error of 0060 °/, for a single measurement. Thence it was seen that
the vertex height y,, abscissa z,, and time of flight ¢, determined on this method
would have a probable error, for a single planimeter measurement, of the follow-
ing magnitudes :
#u=35712461 m,
7,=1041-5+089 m,
£,=240302 + 0022 sec,

Actnally the work with the planimeter was done ten times.

2. The descending branch of the trajectory can bLe calculated on the same

plan.

However the rotation of the axis of the shell has greater influence on the
results of the calculation, than in the ascending branch.

But the descending branch scarcely comes into consideration in fire against
an aeroplane. On this account the continuation of this example is unneces-
sary. .

(b)) With the same 2, 2R, §, 7, v, as before, but with an angle of departure
¢=175°, the results are as follows :

a Y x t v
| 75° Om Om 0 sec 5000 m/sec

74° 45 3276 884 0759 4013
74° 383 4363 1181 1-050 3750

74° 30 5519 1505 1-385 3515,
74° 8850 2443 2-449 3036
73° 30 11377 3188 3:369 2769

73° 1347-8 3820 4191 2569,
72°28 | 15389 4404 4-984 2400
72° i 16810 48569 5622 2285
71° 19337 5791 6843 2079
70° - 21334 6408 7903 1914
68° 2429°1 78637 9678 166-2
66° 26366 841-8 11-110 1477
64° 27884 912-3 12-296 1335
61° 20494 996-1 13744 1173
57° 309016 1081-1 15°196 1017
52° 32028 11605 16-706 880
46° 3286-3 1232-3 18068 767
40° 33398 12880 19:096 687
33° 33794 1341°1 20°109 62-1
- 20° 34202 14198 21-612 546

0° #2=3439'5 x,=1518°1 £,=23511 7, =505;
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234 The high angle trajectory [eH. viI

The range table is therefore as follows:
Angle of slope of ground E=74", 72, 70, 68, or angle of sight relative to the
ground a=1° 3, 5, 7;
=419, 870, 1170, 1373 m ;

- y=1470, 2697, 3217, 3398 m ;

. 0Z =r=1525, 2827, 3416, 3656 m ;
1=4-72, 1089, 16-06, 1985 sec ;
8=72°30, 65°, 51° 15/, 31° 45",

The tangential velocity on striking the ]
target is
v=248, 141, 88, 58 m/sec.
At the vertex
¥s=34395 +2-37 m,
2,=1518'1+049 m,
z £,=23'511 + 0006 sec.
(¢) The same P, 2R, 8, ¢, vy as before, but angle of departure ¢p="70° with the
following range table:
Angle of slope £=70°, 68, 66, 64, 62 ; angle of relative elevation a=0°2,4,6,8;
- w=0, 7826, 1183'8, 1469-4, 16855 m; y=0, 19370, 26580, 30124, 3174 m ;
t=0, 7215, 12'080, 15'797, 18'615 see; v=0500, 2024, 1374, 9685, 787 m/sec ;.
direct distance of mark OZ=#r=./(2?+y%)=0, 2089, 29095, 33518, 3590'3 m.

4 y x t v
70° 0 m 0m 0 sec 5000 m/sec }
69° 50’ 1764 6543 04055 . 4423
69° 40 3192 1179 0766 401-1
69° 30" 4378 1620 1-094 3718
69° 20 5404 200°1 1-398 350-2
69° 10 6319 2353 1:684 3342
69° O 7152 267°1 1-956 3214
68° 30/ 9307 3507 2709 294-2
68° O 11113 42277 3:392 2755
67° 30 12672 4865 4-021 260-3
67° 14038 4438 4-604 2475
66° 16344 6438 5662 2276
65° 18235 7288 6-605 211-8
63° 21140 8697 8221 187°1
61° 2326 982 9556 1685
59° 2486 1074 10-697 15639
56° 2663 1186 12-108 1370
52° 2826 1304 13-594 120-4
48° 2937 1397 14:810 1082
40° 3074 1537 16724 916
31° 3159 1654 18-346 799
19° 3216 1774 20-05 709
10° 3236 1850 21-17 67-2

4° 3241 1897 21-88 658
0° ¥,=3243 ix,,= 1928 £,=22-29 V=654
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§ 371 The high angle trajectory

(d) Same 22, P, 8, 1, v, as before, but angle of departure ¢ =G5°.

The first zone reached from =65 to 8=064° 46, the second from 64° 46’ to
64° 30, the third from 64° 30 to 63° 25, the fourth from 63°25' to 61° 10, the fifth
from 61° 10" to 39°,

As to the probable error of the resnlts as derived from the arithmetic mean
of a repeated operation with the planimeter,

#,=30260+£01m; ,
Zye=2307"83 £ 0056 11 ;

¢, = 21919 + 000055 sce ;
2,= 8040 + 00,

Over the slope E=65°, 64, 62, 60, 58, 56, 54, corresponding to a=0° 1, 3, 5,
7, 9, 11, the direct distances of the points struck worked out to

07=0, 1140, 2300, 2918, 3310, 3563, 3724 m.

0 y x t v
65° 0m 0m 0 sec 5000 m/sec
64° 52 11647 5448 0271 4597
64° 40’ 260°36 11229 0-635 4152
G4° 30 360°56 1699 0912 3873
64° 10 5275 2499 1415 3497
63° 55’ 632-7 301-3 1-760 3312
63° 40 727°5 3480 2087 3170
63° 25 8139 3911 2:397 305°6
63° 10 8942 431°4 2695 295°1
62° 50’ 9925 481°5 3075 285°2
62° 30 1082-7 5281 3:437 2756
62° 10 1166°0 5717 3783 267°1
61° 40’ 12433 612-8 4116 2594
61° 10 1382-8 68856 4744 246°1
60° 15902 8048 3761 227+5
59° 1736-6 8914 6°537 214°1
58° 18627 9759 7-247 2027
56° 20674 1109-4 8513 1842
53° 22948 12699 10-110 163-4
48° 25414 1472-3 12-184 139-5
39° 27849 17253 14:971 1137
25° 2951°5 1983-6 17-991 93-1

0= 0° ¥s=230260 Z,=2307'8 t,=21919 v,=8040

The preceding results from four steep high angle trajectories of the same
gun are given here in detail because they give an opportunity of settling the
value of the methed, employed far too frequently in practical gunnery, of tilting
the trajectory.

3. The foregoing planimetric method was simplified to a con-
siderable extent by Freiherr von Zedlitz in 1913.

He proceeds equally from the division of the trajectory into a
number of arcs, on the assumption of a monomial law cv* for the
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retardation due to air resistance; and the relation between v and @
is first obtained. '

So too the value of v at the end of an arc may be calculated,
corresponding to arbitrary angles of slope of the tangent.

Thus for instance, as in § 20, on the quadratic law the relation is

1 1 2
(veos B (w,cos 6,) = 7 [E(6) - E(O)]

Freiherr von Zedlitz next applies to such an arc the method of
expansion in a series, described already in § 224a, where y, 6, vcos 6, ¢
are given as functions of .

Eliminate between the four equations the term involving ¢, and
three equations are obtained between the three variables #, y,¢; and in
this way v. Zedlitz derives two systems of equations of different degrees
of accuracy. For details reference must be made to the work of
v. Zedlitz (see Note).

Collection of formulae.
On the preceding notation, and with

vpcos b, pt—1 _
veosd O’ tan 6, —tan @ T
1) _ 2 (v, cos 8, (tan 6, — tan 6)
g (1+p%) ’
=7 _ip-1
@) y—q(\1+?tan€0 3})2—_1),
: _2_ & p-—1,
(3) t~3vocosﬁop 1’

and thence the end point of the first arc 1s determined. :

Similarly for the end point of the second arc, and so finally for, -
the complete trajectory.

The value of ¢ differs in proceeding from one arc to the next,
taking into account the diminution of air density with the height.

It may be mentioned that in this solution there is no need to™
assume a monomial law, cv”. As stated already in § 17, the integral.
relation between v and 8 or the so-called hodograph equation can be
obtained with accuracy for any given law of air resistance.

.,

Example (by Freiherr v. Zedlitz).
Calibre 10 cm, weight of shell 116 kg, initial velocity »,=3536 m/sec, angle
of departure ¢p=0,=27° 15/, air density 1'20 kg/m?. Results as follows:
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§ 37] The high angle trajectory 237

l Calculated | Caleulated

- by (1) by (2)
6 v mfsec Tm ym a vmfsec | zm ym
27°15" | 35636 0 0 0 2296 3573 | 1010
25 325+4 460 226 - 8 2209 4292 961
23 3079 816 384 -~16 217-2 4971 816
20 288-8 1290 572 -24 217-9 5642 572
16 2698, 1843 762 -32 222-7 6329 205
12 2555 2333 874 -36 226-8 6688 | — 38

7 242:3 2883 967

4 236-1 3188 997

0 229G 3573 1010

4. A first rough approximation to the calculation of a steep high
angle trajectory is obtained by treating the path as a parabola of the
third or fourth order.

Thus the formulae of Piton-Bressant and Hélie of § 22a may be
employed :

g
y=wtan¢—m(l +K-‘Z’),
tan 6 = tan ¢ — Qvo‘zgﬂ (2 + 3Kz),

vecosd 1
vcosp (1 +3Kz)’

o 2 (L+3Kal-1
" Yy, cos ¢ K :

Thence K can be determined, given v, and ¢, and the measured
range X, by
v? sin 2¢

But we must not expect to obtain very exact results in this way,
as it is manifest that on the same trajectory, and with same v, and ¢,
the factor K along the path cannot be taken as constant.

The Tables of Otto (Vol. 1v) can serve the purpose, in so far as
4 they go, of obtaining corrections with respect to the height of the

vertex.
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II. ON THE ERRORS WHICH CAN ARISE IN THE TILTING
OF A TRAJECTORY.

A general consideration of these errors can only be made on the
conditions of a vacuum (§ 4); in practice, the errors must be in-
vestigated for each particular case.

§ 38. Ordinary procedure of tilting or swinging a trajectory.

A trajectory 08,Z,, as in the figure, is treated as a rigid curve,
and rotated through the angle
E of the slope of the ground
into the steep position OSZ.
Conversely, if a mark Z on
the line of sight OZ at the
angle, E, of the slope of the
ground, is struck when the
actual angle of departure with
the horizon is ¢=FK +a, it is
assumed that the trajectory
0SZ can be calculated, as if 1t
were treated as a flat trajectory
08,Z, with the angle of de-
parture ¢ — E or a, and with the same initial velocity.

From the preceding examples the ranges on the steep slope,w or 0Z,
are known for four high angle trajectories 0SZ, and also the angles of
departure of the same shell, relating to several angles of slope E of
the ground.

Then if the flat trajectory range w, is calculated by Vallier’s
method for the angle of tangent sighting ¢ — E, and compared with w,
the error e is obtained, due to the employment of the method of
swinging the trajectory. ’ -

The adjoining table enables us to see that under these con-
ditions, with the employment of the same tangent elevation, the .
range is greater over the rising ground than over the horizontal;
or in other words if, as usual, the tangent graduations of the weapon
are marked for aiming at a target on the horizontal through the
muzzle, then for aiming at a target at the same distance but at a
high angle of sight, the tangent elevation must be smaller.
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§ 39] The high angle trajectory 239

As stated in § 4, we are concerned chiefly with long range fire;
and sometimes the corresponding relations may be found to be
reversed completely.

T
Tangent |Flat-trajectory | Actual range
Slope | elevation | range w, with | 1 on the slope | Difference | Error as
of from angle of for incline £ between | percentage
ground | ground departure a and taogent | w and w, of w,
slope and slope zero | elevation a
E= |a=¢p-E= e=w—w = s
| & 78° 2° wy=1111m |w=2847T m 1736 156
°|°| { 76 4 1791 3535 1744 91
- 74 6 2225 3713 1388 60
° 74 1 667 1525 858 129
2 72 3 1480 2827 1347 91
I { 70 5 2069 3416 1347 65
he 68 7 2554 3656 1102 43
o 68 2 1117 2094 977 88
B f 66 4 1791 29095 11185 62
[ﬁ' l 64 6 2326 3352 1026 44
| 62 8 2770 3590 820 30
1 64 1 668 1140 472 71
o 62 3 1480 2300 820 55
3 60 5 2069 2918 849 41
I 58 7 2554 3310 756 30
S 56 9 2966 3565 599 20
54 11 3319 3724 405 12

At all events the errors that arise in the simple tilting of a
trajectory may be serious.

§ 39. Burgsdorff and Gouin’s method.

The principle is the following: Given a flat trajectory 0Z, with
the angle of departure a,, as in the figure on the next page.

Here the height fallen A4,Z,=f is known, being the vertical
distance from 4, to the muzzle horizontal in Z,, and also the
distance OA,=a; and 0A,Z, is considered as if it were a bar with
hinges at O and 4,, or as a fishing-rod OA4,, with line 4,Z;; the
system is rotated about O, the point of departure, as a fixed centre
of rotation into the position 04 Z, with

OA=04,=a, and AZ=4,Z,=f.

The rotation is carried out till Z, reaches the line 0OZ, sloping

up at the given angle Z0Z, = E.
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Then let OZ or w be the range on the slope for the high angle
fire, and let the angle of departure be reckoned from the horizontal
AOZ, = E + a, so that a is the tangent elevation with respect to the
ground line of sight.

This angle a and the range w are given for this rotation; and they
are found either bya graphlcal construction or else from the formulae

sin a¢ =sin a, cos k&, !
w=w, tan o, cos (£ + a) cosec a.

In the graphical construction we notice that in the motion
described, Z, moves on a circle.
If a point O, is placed vertlcally
below O at a depth .

00\=4A,Z2,=AZ=f, ' y

a hinged parallelogram
00,7, 4, ;
can be changed into 00,Z4 in
the second position, the fizxed
points of rotation being O and 0,.
The point Z, moves along a
circular arc Z,Z with centre at
0,, and radius a. |’.

This shifting movement can thus be carried out by means of a
mechanism, or a parallelogram linkage, for any distance OZ of the
target, or any angle of slope %, in order to determine the tangent
elevation 40Z or a (the apparatus is constructed by the firm of
Haker and Heidorn in Hamburg).

In the application of this principle the following mechanical
assumptions have been made; the flat trajectory 0Z, is described in
time of flight 7 sec, and under the simultaneous influence of air
resistance and gravity.

It is assumed that the same mark Z, will be reached, if these two
forces come into’action in succession for a time 7'

The shell projected in the direction OA,, subject to air resistance
alone, but with gravity left out of account, will move in the straight.*
line 04, to 4,; and afterwards under gravity, it will fall from A '
to Z,.

In the high angle trajectory OZ, on the same assumptions, these
two steps remain the same, viz., 0OA =04,=a, AZ=A,Z,=f. !
~ The difference between the flat and steep trajectories can only be
due to the diminution of air density with the height. :
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§ 40] The Ligh angle trajectory 241

But it is clear that this mechanical assumption is unsound in
principle, even independently of the variation in air density.
Because the movements along @ and f are not independent of each
other; just as the components of the motion of the shell along the z
and y axes are mutually dependent (except for the special case of the
law of air resistance, where the resistance is taken as proportional to
the first power of the velocity).

If it were the case that this independence was true for all finite
arcs, the solution of the problem would then become very simple.

The parallelogram law holds for a finite arc only when forces are
constant in magnitude and direction.

But here this is not the case: the air resistance is always a variable
quantity.

This swinging or tilting provides, therefore, only an approximate
method, and an error is present. To determine this error the four

~  steep high angle trajectories can be used; a, a, w are known, and then
l o; and w, can be plotted or calculated.

If then, corresponding to an angle of departure a; the correct flat
trajectory range w, is observed, or calculated on Vallier's method, it
becomes a matter of comparing the values of w, and w,.

In a previous example, with ¢ = 80°, the value £ = 78° was chosen,
and so a=2°. Thence we find o, =9°39"8, f=57240m; and so
w, = feot o, =3361 m.

On the other hand, for the same angle of departure a,=9°39"8,
the true flat trajectory range w,=3088 m; and it is immaterial on
which of the two ranges the percentage of error is to be estimated.
With w, as the basis, the error works out to 81°/,.

With E=76°, a=4°, w,=4712m, w,=4169m; an error of
543 m, or 11'5°,. For E=174°, a=6°, w,= 5459, w,=4722; error
737 m, or 13'5°/,.

As in the other examples, it is seen that the percentage error

. increases with a; still it is smaller by the other processes than that
which arises in the ordinary method of tilting.

§ 40. Percin’s Method.

When a target Z is to be struck, situated on sloping ground 0Z,
at a slope ZOB = E, at a distance w m, the angle of departure «
to be employed with respect to the ground OZ is that corresponding
c. 16
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242 The high angle trajectory [cH.vII

to a flat trajectory OB of range p + Ap = OB; where p denotes the
horizontal projection 0C=wcos £

and Ap=%), where % is the

vertical height CZ of the mark
above O; the + or — sign to be
employed, according as E is greater
or less than 2a; so that Ap=0
when E=2q. Under certain cir-
cumstances, Ap must be multiplied
by a factor %, to be determined
experimentally.

1. Example, as above, ¢ =80°.
For a=2° and h=2785m,

Tm, and OB =06477m,

with a correct angle of departure «=0°57"45. According to Percin,
a=2°; difference 1° 2”55, or 52 /,.

For a=4°h=23430m, OB =992'21n; and the correct a =1°41"7;
difference of 589/,.

For a=6° Ah=35695m, OB=12382m, and correct a=2°14"1;
difference of 63 °/,.

2. Example, as above, ¢ =75
Fora=1,3,5,7° the differences were 42, 50,53, 58 ,, respectively.

3. Example, as above, ¢ =T0°
For a=2, 4, 6, 8°, differences 26, 29, 30, 32°/,.

Result: Thus we see that the ordinary procedure of tilting the
trajectory is not applicable with very high angle fire.

The method of Percin is, moreover, inexact, unless an empirical
factor k is introduced. However on slopes up to about 65° the per-
centage error on this method comes out nearly constant, so that good
results may be obtained by the introduction of such a factor.

The smallest errors arise from the employment of Burgsdorfi’s
method; in particular for the steep part of the ascending branch of a
high angle trajectory it can often give good and fairly accurate
results.
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CHAPTER VIII

Solution of various trajectories. Employment of
experimental results for the construction of
Range Tables

§ 41. I. Solution of problems by means of Table 12, Vol. IV.

System of formulae.
(A) for any given point (zy) on the trajectory.
Primary Functions D, J, 4, T (Table 12a, Vol. 1v):

| = D(U) = D), e, (1)
h ¢ 5 [T(u) — TN eereeeeereeeer e (2)
r‘ tan 8 = tan ¢ — 9 cost [J(u) J@W)], e, (3)
1
X y=atand— c‘;: 5 [ﬁ EZ; — ‘;gg - J(v.,)], ...... (4)
U coS ¢ =
s VS oot et (5)
‘ Secondary Functions ¥, H, L, etc. (Tables 12b to 12f):
v g= S=D@=D@), v (6)
t= FsTp H(, E)y eveerereereesennnns e, )
tan0=tan¢—§—cz—s—2$L(vo,§), ........................... (8)
tan @ =tan ¢ I:l _s—inc;&;bL(v"’ ‘g’)], ..................... (€)]
y=wtan¢—%¢—)E(vo, E), veeeeereesvee s (10)
V= s [Sir:ﬁ—ﬁ;(vo, g)]. ..................... (11)
16—2
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(B) At the point of descent (y =0, x = X):

Eom=s e 2
§0 26 = XN (U, £ = € B0, £), +vrvvernrerersrersrennss s
v =%%‘9 s e S (14) i
£,= D(ue) Y NS s |
r=_2 ¢ ,Ee) .................................... (16)
—tanf,=tan w = 2057‘1)1&[(00, £,)=tan ¢1é,[((;}:’£e)) (L7 !
(C) Vertex (2=ua4, y=1y,, §=0): 1
S“‘c,zd’ = L(vo, Eo)y ettt (18) !}

te= = ¢H(vo, EDy eevereeerereeee e (19)

E = —, =D(u) = D), reveeiiiiiiiiiiniiiiiirninns (20)

Ys= oa, 5t M (o, &) = 2 tan ¢ Mot (21)

' Qcostgp MUY L (v, &)’
Vg =UgCOB . wrrrrriiritiriiiiiiiiiniicineneaeas (22)

(D) Some empirical and semi-empirical approximations :

ys=12261",
= T2(1°226 + 0:002T),
=1X y/(tan ¢ tan ),
yo=3X (tang+tane), (23)
sin ¢ sin » :
y= X T ey
055X
ys:cot¢+cotw’ J
2 =2%X +y,cot $,
.................. (24)
= X(05 + 15000 }

Practical rile: The abscissa @, of the vertex is equal to that range
in the Range Table, for which the angles of descent and of elevation

This is derived from tilting the trajectory, because the tangent at the
vertex is horizontal ; compare §§38 to 40. :
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§ 41] Solution of various trajectories 245
(E) The notation is as follows:

2R = calibre in cm, P weight of shell in kg, (zy) any given point,
z horizontal axis, positive in the direction of fire, y vertical axis and
positive upwards, (z,¥,) coordinates of the vertex, X the range in m
on the horizontal plane through the muzzle ; v, the muzzle veloeity in
m/sec; v = velocity in the trajectory at any given point (zy) ; v, vertex
velocity, v, velocity at point of descent (y =0, z = X), 6 inclination to
the horizon of the tangent at any point (zy); 6, =— e at the point of
descent; o the acute angle of descent; ¢ the time of flight to reach
any point (xy); ¢, time to the vertex (z,y,), 7' the time to the point of

descent, or the total time of flight; v = 'vccos 0; 1, and u, the values

08 ¢
of u at the vertex and point of descent respectively; 8 the air density
in kg/mn3:

¢ 11;26/18 (Pin kg, R*in cm?). ......... (25)

7,8 depends on the shape of the shell and the curvature of the tra-
Jjectory; according to Vallier,
B=1, ittt (26)

or more accurately B=cosip, ......... e 27)

61y I (v,) sec® + 52 (v,) (1 — 0:00011y,) K’ (v,) 28
(6K (vy) + 5K’ (u,)] seC?p »-+(28)

or B, =

and according to Vallier, ¢ depends on the velocity of the shell and
on the semi-vertical angle ry, of the point of the shell; that is

for »> 330 mfsec, ¢(v)=w, ﬁioz%')) ......
for v < 330 m/sec, + depends only on «,,
that is
t=067 | 072 078 ] 100 [ 110
for o, = 31° | 33%6 | 36°9 | 41°5 ’ 48°2
and 7, denotes the value of 1 for v=v,.

. For the original Krupp normal shell with ogival head of 2 calibres
of rounding, or 1-3 calibres of height of head, or ¢,=41%5, 7 is
constant =4, = 1.

Accordmg to O. v. Eberhard the value of ¢ for any given velocity
v is given in the equations on p. 49.
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K’(v) is given in the following table:

v |1weE@| v |102K'w]| o |12k @] v |102K (@)
150 1870 270 765 390 687 700 228
160 1680 280 722 400 669 750 194
170 1510 290 687 420 628 800 164
180 1401 300 651 440 590 850 140
190 1293 310 667 460 550 900 121
200 1195 320 687 480 511 950 106
210 1124 330 706 500 474 1000 92
220 1037 340 720 525 431 1050 81
230 971 350 724 550 393 1100 72
240 913 360 722 575 ; 351 1150 64
250 856 370 714 600 325 1200 57
260 808 380 702 650 272 1250 51

L

The law of the retardation ¢f(v) due to air resistance, given in kg,
is as follows: '

for v > 330 m/sec, ¢f(v) = ¢ x 0125 (v — 263) (Chapel-Vallier law),

(11)
for 330 > v > 300, =¢ x 0021692 ¢*
o v 7 ) (Hojel law),

(8)
for 300 >, of (v) = ¢ x 0033814 v

R¥(m?)10008,i _ R*(em?) 8,0
T T Px1206  Px1206°
¢ =1 for ogival shell of 2 calibre radius of rounding, since the laws of
air resistance were obtained by experiment with shell of this form;
moreover ¢, as shown later, is slightly variable with the velocity, as well
as with the shape of the shell; 3, is the air density at the height y m
above the ground; and according to St Robert and E. Vallier,

8, = 8(1 — 0-00008y) ;

according to Charbonnier, §,=8(1 — 0:00011y), where & is the air
density on the ground.

Some examples.

1. Given 2R, P, 8, 4, vy, and ¢. To determine the elements of the vertex, .
and of the point of descent. In the first approximation B is taken as in (26); or
- if ¢ > 10°, from (27); thence ¢ from (25), then L (v, £&,) from (18), and thence
&, and consequently x,=c'£,; moreover y, from (21), and D (%,) and conse-
quently %, from (20), as well as v, from (22). ‘ |
With these values of u,, v,, and thence of A’ (v,) and K’ (u,), calculate a 1
closer value of Bi, from (28); and then the new ¢’ is obtained from (25), and at the |
same time a closer value of (z,y,) at the vertex. '
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Then £ follows from (13), and thence §&,; and from (12) the range X ; further
the angle of descent w from (17); and from (16) the total time of flight 7'; from
(15) D (u,), and thence u,; and then the final velocity v, from (14). Instead of %,
v may be given,

Numerical exumple. 2R =15cm, P=27-44kg, 8=127 kg/m3, 2 calibre radius
of rounding of the ogival head of the shell, and so ¢=7(v,) is constant=1,
ry=460 m/sec, $p=40°7".

Since ¢ > 10°, B=cos ¢ =089301, in a first approximation ; and then in (25),
¢'=05187, so that from (18) -

sin 2¢p  sin80° 14’

L (00, &)= P i A e = 18998,

Then from Table 12 e, Vol. 1v, interpolation gives the value £,=8915.
Thence it follows in the first approximation
from equation (20), 2= '€, =8915 x 0'5187=4625 m,

» Table 12f, M (v, £)=1142,
» cquation (21), Ys=2342 m,
» equation (20), 1,=237°8,
» equation (22), v,=181'2,

The Table of A’ values gives
K’ () =550.10"12, K’ (u,)=925.10"12, K’ (»,)=1379.10"12;
and with these values a closer value of %8 is obtained from (28), that is
=G.1 .550.10" 12 sec3 40° 7'+ 5.1 (1 —0°00011.2342) 1379.10 12
(6.550.1071245,925.10" 1) sec? 40° 7'

H
B=0946.
A recalculation with this value 0°946 leads to a third value, 3=0956; further
repetitions will not increase the accuracy of the solution.

2. Given 2R, P, 3, 7 (or the value of y,, instead of 1), and further v and X,
To determine the angle of departure ¢. Calculate 8 from (26) in a first approxi-
mation, ¢’ from (25), £, from (12), sin 2¢p and thence ¢ from (13).

Next in the second approximation, determine 8 from (27), and so on, as before.

3. Given 2R, P, §, 7y (or ), .Y and ¢; to determine the initial velocity »,.

Calculate 8 from (27), then ¢ from (25), £, from (12), & from (13), whence z,
is known. After this a closer determination of v,; calculation of the vertex
clements, as in example 1; thence a closer value of 8 from (28), and a closer
¢ from (25), with which to repeat the calculation.

4. Given v, ¢, .1, to determine elements of the point of descent, and of the
vertex (for calculation of range tables and so forth).

From (13) & is found, and thence §,; then ¢ from (12), o from (17), u, from
(15), and v, from (14), 7 from (16). Next for the vertex: L from (18), and with
it ¢, and z, from (20), also w,; v, from (22), ¢, from (19), y, from (21).

5. Given X, ¢, T, to determine the initial velocity, etc.

oY,
sin 2¢b
for a vacuum, with the factor §), or better from a suitable range table;
suppose it #. Calculate & from (13) with it, whence £, is given; hence a first
approximate value of 7' from (16); denote it by 7'

A first appmximate value of v, is given by the formula 1:0=13-

Digitized by Microsoft &



248 Solution of various trajectories [cH. vIII

Another value of #, is now assumed, smaller than »,! if the observed time of I
flight is smaller than the calculated 7%, or conversely ; denote this value of v,
by v, With it in the same way as before, another value of 7' is obtained;
denote it by i

Finally we interpolate ; taking v and vty from which 77 and 7™ were cal-
culated, 7 is determined, and also v, by means of

7]()—1'011 _ /- TII

PSS S D

§ 42. Solution of examples by means of other tables
and formulae.

II. Solution with Siaceci’s Table 13, in Vol. IV.

System of formulae.

‘”_’i D) = D)), wvveeeenreeeeerreeeiieseerieee e, (1)
y=atand—, go; 5 [}4) gg - g((:f)) —-J (vo)], ...... @)
R LA ORIC) SR )
T O e R (4)

= ”c‘(")‘: (: ettt (5)
¢=21 ©)

Then in ¢f(v), the retardation due to air resistance,

(2R)28 1000.0-8651 .
B T RS (7

(calibre 2R in m, weight of shell P in kg, ¢=1 for ogival shell of
2 calibre rounding), and

S (v) =02002v — 4805 + y/[(0'1648v — 47°95)* + 9-6]
004420 (v — 300)

371+ (280)

The value of 8 is taken from Table 13 of Siaccl.

(see Table 7 Vol Iv). ............ 8
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In those cases where the table does not go far enough, 8 is to be
calculated from the expression

B [Gf%v‘”) + 5&’-)] sec’

VA (v°)sec’¢+5(1 000011y,)f @) (9

in which %, and v, are determined in the following manner: Calculate
ys and z,, as described later in IIT: then ':f from (1), taking B=1;

thence u, and v, = u, cos ¢.

The corresponding values in (8) of D(u), J(u), T(x), A (u), are to
be found in Table 13, Vol. 1v.

The secondary tables have been calculated by E. Fasella; sce
Tavole balistiche secondarie, Genoa, 1901.

The ballistic curves, which are described later, can be used instead
of Fasella’s tables.

IIT. Solution by means of the ballistic curve tables,
Nos. ITIIa to IIIg, in Vol. IV.

These tabulated curves, as mentioned already in § 30a, are
employed for the elements of the point of descent and the vertex,
and serve for the solution of the most important problems of tra-
Jjectories with sufficient accuracy for practical purposes.

The tables contain, for a series of values of ¢8X, and for many
values of v,, the values of

v2sin2¢ tanw v,cosw T 5

"X tand’ weosg’ (Xtang) X’ XtdnqS oBusin 2.

Here ¢ has the value given in (7); and 2R = calibre of shell in m,
B =value from Table 13, Vol. 1v.
In the Tables IIla to III g, the curves are drawn for different
values of v,; on the assumption of a quadratic or cubic law the curves
would be coincident.

Ezamples.

v sin 2¢
X
corresponding to the value of v, in Table IIIa, the ordinate 4,; and
then the abscissa ¢8X. Look out for the same abscissa ¢8X all the

1. Given v, ¢, X: calculate , and look out on the curve,
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ordinate values in the other tables. Since v, ¢, X are given, this
determines « from Table I1Lb, v, cos @ from Table I11e, and thence v,
is known; Table ITId gives 7'; Table IIle the value of z,, Table IIIf
the value of ;.

Finally the value of ¢ is obtained from the given abscissa ¢3X,
because B is given in Table 13 of Vol.1v. If 2R, P, & are known, then
¢ 1s given,

2. Given ¢, ¢, #,, to determine X. Proceeding from cBvssin 2¢
with 8 =1, determine, as before, @, v, cos », v, T, 24, 95, and X ; the

last with the help of Table IIIa, because > Slj(’ 2¢

% and ¢ are given; thence B is found more accurately by a repetition
of the operations.

is known, in which

3. Given v, ¢, X, to determine ¢ and the remaining elements.
First take 8 =1, and determine all the ordinate values; from
2 in 9
Table I11Ia the value of ﬁi}? 2¢
value of B from the 8 Table 13 in Vol. 1v: then repeat the pro-
cedure.

The remaining tables then give w, v, 1), #;, ¥s.

, and thence ¢; thence a closer

4. Given v, ¢, o, to determine X and the remaining elements.

Start with Table ITI b; in the corresponding v, curve the ordinate
Z—ZE—E is given; then all the rest are known. X is given by Table III a,
and the value of ¢ from the abscissa ¢BX, since 8 is given in the

table.

Egxample. Given the initial velocity v, = 550 m/sec; range X = 6841 m, angle
of departure ¢=20°; weight of shell P=69 kg, calibre 28=0077 m; mean
air density 8=1-206 kg/m3,

W v,°sin 2¢ . . o= —05

e find then 2——F =A4,=28'4; thence Ad,=1'74, 43=037, 4,=0512,
A5=0'563, Ag=03440, 4;=145000. From A, we find tan 0=1-74 tan 20°, angle
of descent w=32°22. From 43, #,c08 0=191, and so velocity v,=226 m/sec.
From A,, time of flight 7=25'5 sec : from 4, vertex abscissa x,=3860 m: from
Ag, vertex ordinate y,=856 m. Frowm A4;, value of ¢8=0-746.

(2R)? 5i8. 1000. 0865

P.1206
coefficient ¢ can be calculated by means of Table 13 for 8.

Nowsincecf= it follows that ¢8=100;; whence the form
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IV. Solution by means of the formulae of Piton-Bressant.

System of formulae. See §22a.

y=xtan ¢ — 2”;(]0—1;2(;(1 + Kz), ooonennns (10)
tan g=mn¢-2_v—cos’ (2+4+3Kz), ... (11
v cos @ = % s eerereresiennaessennnisinannas (12)
- 9"1{«;027%@ [+ 3Kz)f-1]. ......... (13)
For the point of descent on the muzzle horizon (y =0, x = X):
v sgi;‘(% s e e (14)
E. fan G- S (15)
%;%§=W3Z1-2)’ ................................. (16)
2 3Z7—92)f =
_ 9%:(’; - (Mz-)1 L, an
T+ KX =Z i, (18)
! For the vertex (x..):
v +3KX§}{+ BXN=1 (19)
an ¢ }, +2 Zg ........................ (20)

constant along a flat trajectory.
On the other hand K alters rapidly from one trajectory to another
on the same range table.

i The factor K depends on v, and ¢, and is assumed as practically

- Putting K=%
i K will generally be determined by (14) and (18), and so from

, then A does not vary so rapidly. The value of

?Jf_si’]fﬂ_ﬁb:)m +KX),

for a definite trajectory, for which v,, ¢, and X are known.
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§ 43. Practical applications to the caleulation of
range tables. ’

For the preparation of range tables see Heydenreich, Lekre vom Schuss, 1908,
Part 1, pp. 70 ete.

Here it can be stated briefly that the following quantities are to be measured,
in suitable weather : velocity of shell near the muzzle, angle of departure from
angle of elevation and jump, moreover the relation between a number of angles
of elevation and the mean range attained and the mean time of flight, as well as
the vertical deflection of the mean point of impact from the plane of fire {the
vertical plane through the axis of the gun).

With this practice for mean ranges, the measurement of the dispersion in
range and direction will be possible at each distance.

In shells with time fuzes, the relations between elevation, fuze-setting, and
mean time of burning will be determined, as well as the variations in any of .
these.

The experiments will be carried out with all charges for guns of variable
loading, in such a way that interpolation may be permissible for intermediate
charges,

See Vol. 11 for the determination of the velocity of the shell, and the !
aberration of angle of departure (jump).

For the calculation of a range table in general for a gun, with a
given charge, and for a large number of angles of departure ¢, the
mean range X requires to be measured, the mean time of flight 7, ;
and for time fuzes, the time setting, and the corresponding range.
Moreover the air density 8, is to be measured (§15).

The procedure of the calculations is now in general as follows:

1. Estimation of the initial velocity v, of the shell.

In reality it is not possible, in range table experiments, to measure
the initial velocity in the immediate neighbourhood of the muzzle
over a very short range, as for instance by spark photography (Vol. 111,
§§126—130). Generally the mean velocity of the shell will have to be)
measured at a distance of 25 to 100 m from the muzzle by means of
the Boulengé apparatus.

In this way, for instance, the first screen of wires is placed at 25 m
from the muzzle, and the second screen at 75 m; the mean velocity of
the shell is measured over a distance of 25 to 75m in front of the
muzzle, and this is called v;; but more accurately, owing to the use of
vertical screens of measurement, this is the mean horizontal com-
ponent, v cos 6.
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From a series of measurements, of 5 to 10 shells, the mean value
of the horizontal component of the velocity at 50 m in front of the
muzzle is obtained.

The mean value is first to be reduced to the value at the muzzle,
and that can be carried out by equation (1), § 41.

If the measurements of velocity are carried out at a small angle
of departure ¢ with vertieal screens, then from (1), §41,

2 =D(w) =D (neosg)

from which v, cos ¢ follows, and then v,.

The factor ¢’ is chosen as a first approximation from the value for
a similar gun, when it is not known from previous experiments with
the same gun and shell; then a first approximate value is obtained
for the initial velocity.

Employing this value in the shortest range X and its angle of
departure ¢, a fresh calculation gives a closer value of ¢’, and this will
be used to redetermine the velocity at the muzzle.

For these calculations the Krupp tables are most convenient,
Vol. 1v, Table 8. A numerical example is given in §27.

Tables have been constructed lately by Krupp, after the tables of
Fasella, by the use of which these calculations can be simplified.

The value so obtained of the initial velocity, denoted by v,,.
called the initial velocity of the day, is to be employed in the further
calculations.

2. Repetition of the calculations on the observations over the muzzle
horizon.

When the angle of departure and of slope of the ground is so
small, that the principle of swinging the trajectory may be employed,
the trajectory 0S4 is sup-
posed to be rotated as if
it were a rigid curve, into
the position 0S,4,.

Suppose for instance
the angle of elevation to be
5° the error of departure
(jump) to be + 10’, so that
the angle of departure is
5°10’; and further the difference of height 4 4, between the point of
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254 Solution of various trajectories [CH. VIII

descent, A, and of departure, O, to be equal to 5 m, at a range of 2500 m
along the sloping ground, so that the slope of the ground is —7".

In the tilted trajectory OS,4, the corrected angle of departure

above the muzzle horizon is then
B0A,=¢=5"+10"+"7 =517

These values, X = 2500 m and ¢ = 5° 17, will serve as a basis for
the calculations.

If the tilting of the trajectory is not allowable (see above, § 38),
determine the point of intersection of the trajectory with the hori-
zontal 04,, and suppose for
example A4, =4m; then cal-
culate as a first approxima-
tion the acute angle of descent
A,C4 = (and also the time of
flight T for subsequent pur-
poses: this is easily done with
the ballistic curves, IIIb and IIId, of the curve tables of Vol. 1v). -

Suppose it is found that & =30°; then 4,0=~ 4cot30°=7m. .
Thence the reduced range over the muzzle horizon OC or

X=04,-4,C=~04 — 4,0 =2300 —7=2203 m.
This procedure is not permissible except under certain assumptions |

on the smallness of the land slope A0A4,. Whether it is to be allowed :
must be investigated in each special case.

8. The effect of the wind.

The corresponding values of X, ¢, v, may require to be corrected
for the effect of a wind, having a component + w in the direction of
the line of fire (but w is to be taken negative when the wind is in the
opposite direction, and follows the direction of motion). To make the
necessary correction, calculate with the reduced values X,, v, ¢,
instead of X, v, ¢, where
2,810 ¢

X.=X—-Tw, v:=v2—2vwcosd+u? tan ¢, = ————
r , Ur (] ot ¢‘ s ¢r vocos¢—w

§47).

These values X,, v,, ¢, serve as data for the further calculations:
denote them for simplicity by X, v, ¢. A calculation can also be
made, slightly less exact, by equation (10),§47. The equations there’
given can be used for the lateral deviation of the point of mean
impact from the plane of fire.
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4, We thercforc know how to determine the mean range X,,
mean lateral deviation Z; from the plane of fire, and also the mean
time of flight T, under these conditions.

The uses, to which the results are put, depend on the object of
the calculations.

In a complete calculation of a range table the values X,, ¢ corre-
sponding to the initial velocity v,,, of the day will be employed to
determine the ballistic coefficient ¢, of the day by calculation.

If for instance the table of § 41 (Vol. 1v, Table 12) is employed
for the purpose, the calculations will proceed as follows:

Calculate for every group of observed v, ¢, X; by equation
(18), §41, sin 2¢ = XN (v,, &), the value of £,; and then from
equation (13) and the observed air density & of the day, and the
range X, obtained on the day, the ballistic coefficient ¢’, which holds
good.

This value is to be corrected for a normal air density &,, as derived
1206P ., _ &

A

The series of ¢, values so obtained are plotted graphically as a
function of X.

If the experiments have been made on several days, and repeated
several timnes, then the results are plotted out. A ecurve is then
drawn through the plotted points, and smoothed if necessary.

From the curve so obtained of ¢/, = f(X), the corresponding values
of ¢, can be read off for the separate values of X, proceeding at
given definite intervals; for instance for X = 1000, 3000, 5000, ... m;
and then for any such pair of values of ¢y, X, the value is found

of £, = :‘;{— .
Cn
The angle of departure ¢ is then given for this value of & by
sin 2¢ = XN (v, &), and o the angle of descent by

from the equation ¢’ =

7

Cn .
tan o = 2 Cosz ¢J’[(1’0: Ee) H
the time of flight T'= coz 3 H (v, &), and u, from D (u,)=§,+ D (z,);

thence the final velocity v, = u, cos ¢ sec w.
For a change A¢ of the angle of departure, in circular measure,
AX 2tan¢ A¢

the corresponding change of range is X = tane @nlg

Digitized by Microsoft ®



256 Solution of various trajectories [cH. vIiIT

The corresponding change Ay for given X is given on the figure,
Ay = AX tan w.

Choosing A¢ = {5 of a degree, this formula gives the measure of
the change of height in the striking point due to a change of
7 degree, and the change in range.

In many cases it is desirable in these calculations to start with the
angle of departure, and not from the
range.

The procedure is then as follows,
again using Table 12, Vol. 1v: the
former values obtained for ¢/, are
not to be plotted as functions of the
range, but of the departure angle.

From the curve ¢,=f(¢) for
definite values of ¢, for instance ¢ =2°, 5°, 10°, ... the value of ¢/, is
determined.

Calculate for every such pair of values, ¢, ¢, from equation (13),
§41,

B, £)=""7%.

From the value of E (v, &) thus obtained and by the use of
Table 12b, Vol. 1v, the value of £, is determined corresponding to
the value v, of the initial velocity in the Range Table; and thence
X =¢,E, is given. The calculation of the remammg elements of the
range table follows as before.

The elements of the trajectory obtained in this way, ¢, v., T, are
plotted as functions of X; and then on the curve, thus obtained, the
separate elements of the trajectory are read off for X =100, 200,
300,....

The secondary tables of Fasella are convenient for use in these
calculations. '

5. Application of the results of fire for initial velocity and wir
density as required in range tables.

According to the state of the day, the nature of the weapons
and the difference of the temperature of the powder and so forth, the
initial velocities of the day will differ more or less from the mean
initial velocity as given in the range table. In a recaleulation from
the observed initial velocity v, of the day, and in a reduection to the
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mean value of the initial velocity v, of the range table, the equations

employed are those of §45:
AX 2tan¢ Ay,

(for howitzers and mortars),

X " tanw v,
%{} = 3“______ta.nt’<:n :m it —Av—? (for guns and rifies).

The amount AX is then obtained, which serves for the determina-
tion of the difference Av, between the mean value in the range table,
and the value obtained on the day.

When the difference, A8, between the air densmy of the day, and
the mean density in the range table is taken into account, we have,
as in §45,

AX tan o — tan ¢ AS

and this will give the correction AX.

6. By the employment of the ballistic curves, Tables Illa to
III g of Vol. 1v, the calculation can be made in a simple manner as
follows.

Curves are interpolated corresponding to the mean values of v, as
nearly as may be; and if required the curves are drawn in pencil. All
reductions are assumed as already known for comparison with the
mean range table values.

U sin2¢ s;r; 2¢ for any observed X and its corresponding &,
and look out in Table ITIa the ordinate, and then in all the other
tables the ordinates relating to the same abscissa ¢BX. Then
Table IIIb gives tanw:tan¢, and so the angle of descent w:

Calculate

Table IIIc gives Ze Eg:;, and v,cosw and v, too, since o is now
0
known; Table ITI d gives 7 X{ y
8‘

¥ and z,; Table ITLf gives y,.

and thence 7'; Table ITI e gives

All these elements of the trajectory ¢, w, v,, T, #;, y,, are plotted
graphically as functions of X; and then from these curves the values
corresponding to X =100, 200, 300, ... of ¢, w, v,, T, 24, y, are inter-
polated.

If the observations of X and ¢ are not numerous enough, we

C. 17
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proceed as in 4: corresponding to the observed X, ¢, v,, the value of
v2sin 2¢

X
and this gives ¢, since 8 is given by the 8 Table 13, Vol. 1iv. The
¢ values are plotted graphically, and then the values of ¢ read off
corresponding to X =100, 200, .

Then to the values, so obtamed of ¢cBX the tables w111 glve the
corresponding values of ¢, w, v,, T, @, ¥s.

is caleulated: the value of the abscissa ¢BX is ascertained,

7. Finally, when the formulae of Piton-Bressant are employed, it
1s convenient to represent on a diagram to a sufficiently large scale
the functions of Z arising in equations (15), (16), (17), §42, such as
1 1 (37 — 2)F —
7’ N(3Z-2)’ Z-1
as a function of Z; a table of these functions has been given already
in §22a.

Th follows: Caleulate Z="C512% for the difr

e process is as follows: Calculate 7X or the different
reduced ranges X and corresponding ¢, and look out the functions
on the diagram for every value of Z.

By means of the equations (15), (16), (17), §42, and without much
calculation the values of w, v,, 7 are obtained; and the intermediate
values for equidistant X can be read off by interpolation.

2 - so as to read off the value of each

8. In the range tables the columns of the zones of probable
scattering are obtained usually by shooting at some particular ranges.

The point of impact must always be measured exactly; the point
of burst of time-fuze shell is observed by photography. Consult
§863 to 65 on the calculation of the individual points of impact or
burst. The probable errors are again to be plotted graphically as
functions of the range.

A curve is then drawn through the points so plotted, and the
results entered on the range table.

9. The times of flight are of frequent value in firing practice; as,
for instarice, in shooting at a moving mark, aircraft, ships, cavalry, ete.

Moreover the times of flight give a guide in setting a time fuze,
which with a mechanical fuze can be relied on to a certain extent.

The measurement of these mean fuze settings for the range table
can be carried out in different ways.

In a small calibre, the expense of ammunition is not so important
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a detail of the range table experiments. At the present time,
according to Heydenreich, fuze experiments should be carried out
with weapons of different states of wear, as, for instance, with a new
gun, a similar one that has fired an average number of rounds, and
one that has fired a much greater number, and at different seasons
of the year, in summer and winter. From a comprehensive series of
such experiments a curve can be obtained which will give the fuze
setting to be inserted in the range table.

If time docs not allow of this experimental procedure, or if the
cost is too high owing to the calibre of the gun, the following plan is
recommended:

The photographs are taken to give the mean value of the time

of burning, and the time of flight. The ratio of fl’il’ 1.e., of the time of
{

burning to the time of flight, is noted. This ratio alters only slightly
with the range, but may be different from day to day.

The ratios are again plotted on a curve. The results are taken as
the basis of a further determination.

Maultiplying the mean range-table time of flight T by the ratio

¢
T,
B, is obtained for the corresponding range.

This method of calculation is only approximate, and assumes that
at a given range the mean range-table fuze setting B, bears to the
setting of the day B, the same ratio as the mean range-table time of
flight to the time of flight of the day, that is

BB:B¢=T3!T¢.

for the same range on the curve, the mean range-table fuze setting

10. The calculation of the mean range-table lateral deflection,
which serves also for adjusting the amount of drift imparted by the
rifling, is derived from the perpendicular distance from the plane of
fire of the mean point of impact.

By means of a formula of Hélie, § 56, from these values of Z, the
factor 4 is calculated, and plotted graphically as a function of the
range, taking into account the results on different days of fire.

On this curve the values of A are read off conversely for the in-
dividual ranges, and by means of the values of 4 and using the mean
range-table v,, the mean range-table lateral deviation Z from the
plane of fire is obtained for each separate range.

The value of Z, calculated in angular measure (sixteenths of a

17—2
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degree, or thousandths of the radian), is plotted as a function of the
range, and the curve so obtained is used for reading off the lateral
deviation for the various ranges.

11. The danger zone R for a height Hm of the target (for

instance H = 1 m) is frequently given in the range table.
This is the horizontal stretch CB in the descending branch of
the trajectoryreaching

4 2 from the point of de-

H . scent C back to the

= p point 4 ?vith the ordi-

X"“““" 7R l;any;/:‘)l—;;f nate BA=H, in the

figure,
The calculation of this length OB = R follows from equation (10),
§ 41, by finding the point 4, for which y = 4.
As this calculation is rather troublesome, an approximation can be
made generally by assuming a parabolic element CA of the trajectory,

when o
r=ix 1=/ - s

so that in the case above, with X = 1200, H=1m, R=21m.

Examples of range table calculations.

1. For a rifle: Assume the mean velocity »o5, given by a rifle, between the
muzzle and a point 50 m distant to be v,;=860 m/sec.

The error of departure (jump) is found to be 0"3; let it be assumed to be
constant.

WNext let targets be set up at distances of 1800, 1500, 1200, 900, 600,... m; and
suppose for example that on the target set up at 1200 m, the mean point of
impact, when shooting with tangent elevation *“1200,” is at a height 105 cm
above the muzzle level. Take the air density of the day at 1'255 kg/m3, and
a head wind against the direction of firing of 1'53 m/sec. Take the height of
the tangent sight for “1200” as 31-94 mm, the distance between the sights
5000 mm, the height of the foresight 2001 mm.

(@) Calculation of the muzzle velocity v,: Here the equation (1), § 41, is
employed, D (vg)=D (vg5) —%? ; ¢ is calculated from P, the weight of the bullet,
2R the calibre, the air density 8, and the form coefficient 7. This last is not
known, and so, in default of other data, it must be calculated approximately as
in §13 (Law of Lossl) from the form of the head'of the bullet; and so it is found

P x1-206

~JEsr thence v, is found =880 m/sec.

that ¢'=
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§ 43]. Solution of various trajectories 261

() Calculation of the angle of departure (§§ 146—149).
With the tangent clevation a, corresponding, for example, to a range of 1200 m,
tan am=(31'94 ~ 20-01) : 500, a=1° 22"0.
The angle of correction e is given by tan e=105:1200, e=0° 30" ; and so the
angle of departure ¢p=1°22"0+0"3-3"0m=1°19"3
The value of ¢ for the other ranges is calculated in a corresponding way.

(¢) Correction for the wind: A calculation of the time of flight 7" and
tho angle of descent o (§ 47) gives AX'= 4 4'5 m; so that, with 2,=880 m/sec,
$=1°19"3, ¥=1204'56 m, 8=1-255 tho calculation is continued.

(@) Reduction to normal air density 1'225 kg/m3: From equation (13), § 41,
sin 2¢p=JYN (1o, &), in which v, ¢, X are known, £,=12434 ; then

=X :1£,=1204'5 : 12434,

The air density of the day 8=1255, and the normal air density is 3,=1225;
so that
, .8 12045 1255

Cp=C é;——-m34 . m=0'099.

Further reduction is not required, if »,=880 m/sec is the initial velocity of
the range table, .

The corresponding values of ¢/, are calculated in the manner described for all
the ranges and are plotted graphically as a function of X'; figures are then inter-
polated for values of the range, such as X'=1800, 1700, 1600, ....

Thus, for example, for X'=1200, interpolation gives ¢s, or for brevity ¢ =0098;;
thence £,=X: ¢'=12180.

Again the time of flight 7" is given by (16), § 41, and thus 7'=¢sec ¢ H (v, £,),
and, 7'=2'78 sec: the angle of descent w from (17), tan w=4%¢ sec? ¢ M (2, £,),
@=2"46"6. Moreover (18) gives £,=7228, and (20) #,=¢'§,=712 m; and then
from (21) ,=10"1 m.

Finally from (20) #,= ~,=390'6 m/sec.

The elements of the trajectory are calculated in a corresponding manner for
the other ranges.

In the case of the infantry rifle, a table is usually added to the principal range
table giving the ordinates of the trajectory: for this purpose, as for example for
X'=1200 m, the corresponding angle of departure ¢ is calculated, and then from
(10) or (11) §41, the ordinate y, corresponding to a number of values of the
abscissa x, as =100, 200, 300,... up to 1200.

2. Foragun: Let the mean value of the horizontal component of the velocity
from five rounds at an elevation of 3° be measured at 75 m from the muzzle, and
be found to be 6935 m/sec.

The error in the angle of departure (jump), as determined by Siacci’s method,
with two paper screens (Vol. 111, § 151, 3) is found to be 5’ 37",

Next, suppose the mean ranges obtained with elevation angles 3°, 47%°, 78",
124" to be 4152, 5046, 7409, 9724 m. The air density of the day on the ground
is 1193 kg/m?, and a wind is blowing from the right with a maximum strength
of 1'5 m/sec.
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262 Solution of various trajectories [onH. viIn
(2) Calculation of v, : Preliminary estimate of ¢ =0-288 : thence
?= 75 :0-288=260.

According to Krupp’s Table 8, Vol. 1v, D(693:5)=10798. Thence
D (vycos 3°)=10798 — 260=10538, and v, cos 3°="700 m/sec,

from Krupp’s table. Since cos 3°=0'9986, we can take »,="700 m/sec, in the further
calculations.

(b) For example, at 9724 m, with angle of departure 12°, the slope of
ground, —1'52", and an error of departure +5'37”, the true angle of departure
for the furthest target is ¢=12°3'45"+1'52"+5 37"=12°11'14"; and so
2p=24° 22’ 28", sin 2¢ : X =0-00004241 =V (%, £,).

In Table 12¢ (see Vol. 1v), with #,="700 m/sec, & =286025, then

¢=9724:86025=1-132.

The calculation for the other ranges is carried out in a corresponding manner.

If the secondary tables of Fasella are employed, sin 2¢b : X is to be calculated.

Fasella denotes this quotient by f;, and from Fasella’s Table III, and
v,="700 m/sec, we get f,=2896, ¢;=9724:2896=3-358; and then

cu=3858 1003978,
It must be noticed that according to the method employed, the factor ¢ hasa *
different meaning, so that it has not always the same value.

In a corresponding way, by the employment of Fasella’s method, applied to
the other data of shooting and their results, we find the values of ¢/, to be 3:315,
3:158, 3:152, 3-278 (the last being as above).

In a second trial with the same gun the value #,=691 m/sec was obtained;
and with angles of elevation of 3°, 48°, 74", 13°, the mean ranges were 4043,
4946, 7363, 10082 m. The air density was 1256 kg/m3.

The corresponding values of ¢, determined on the procedure of Fasella were

3-343, 3319, 3-442, 3-555.

The ballistic coefficients are thus seen to be variable, not only on the two days,
but also during the same day; and in fact they stand on the second day on an
average higher than on the first.

A curve is drawn of ¢, for the values thus obtained on the two days of
practice, to represent its value graphically as a function of X ; and it is seen to
rise somewhat with the range.

Based on the measurement of the initial velocities on the two days of shooting
of 700 and 691 m/sec, with the temperature of the powder as +28° and +8°, the
mean value for the range table is taken to be 692 m/sec, at a temperature + 10°.

For example, at X=8000 m, suppose the value of ¢/, on the curve to be 3:275.

Calculating again with Fasella’s method, fo X :¢'=8000:3275=2443; and
to this f, and #,=692, Fasella’s Table III gives f,=0'00003848; and then from
sin 2¢p= X1, 4) 8° 58

The error in the angle of departure (jump) is to be subtracted to obtain the
angle of elevation. Similarly the calculations for X'=1000, 2000, 4000,... can be
made.

Digitized by Microsoft ®



§ 43] Solution of various trajectories 263

Fasella’s Table IV gives, for the above values of f, and =, the factor f;, and
thence from the equation tan w=f;tan ¢, the value of w, the angle of descent ;
and so in our numerieal example o =14° 47",

Fasella’s Table V gives, for £, and ¢, a factor f3, and then from the equation
cl
cos ¢
Fasella’s Table I for the same quantities gives a factor », and thence from the

equation v, c08 w= % cos ¢, the final velocity v,; in our example v, =326 m/scc.

If the results of the firing are employed in other methods of caleulation, then
at 8000 m, under mean range-table conditions, Siacei 11 makes w =14° 37", Didion
©=14° 58, against 14° 47’ above.

And for the final velocity, 329 according to Siacci II, 312 according to Didion,
against 326 above,

So too, different results were found for the other ranges in angle of descent
and final velocity ; but the results are not recorded here. The calculation has
the mere character of a process of interpolation.

L=

J3, the time of flight ¢; and in our numerical example =181 sec.

(¢) The calculation of the mean range-table fuze-setting scale proceeds as
follows, selecting the previous example for illustration.

With the setting of 26 seconds a range was obtained of 9961 m, and a 1nean
time of flight of 24-4 seconds was observed.

The ratio of the setting to the observed time of flight, B,: T, works out to
26 :24'4=1'07. On the same day, and at ranges of 7576, 5024, 2487 m, the ratio
obtained in the same way worked out to 1:16, 1-27, 1-36.

In another experiment the value of the ratios for ranges of 10160, 7125, 4718,
2532 m, worked out respectively to 1-05, 1-15, 1:32, 1-31.

These ratios, plotted graphically, make up a curve which with increasing
range approaches the abscissa axis slowly.

On this curve, the value at 8000 m was 1'16, and in the mean range table
the time of flight read off was 18°1 sec.

Consequently, on the mean range-table conditions, and at a range of 8000 m,
the setting is 181 x 1'16=21 seconds.

At a range of 8000 m, and with a fuze setting of 21 seconds, the mean point
of burst will be 8000 m from the muzzle, and at the same level; that is to say,
it will give on the average 509/, of hits,

According to the construction of the gun, and the facts concerning target,
ground, ete., the conditions of the height of mean burst above the muzzle horizon
are determined.

In our example this may be put at 21 m at a range of 8000 m.

The trajectory of the mean range-table conditions must then be tilted to give
this 21 m of extra height, in order to make the 21 seconds of time of burning
give the best result.

But then, as evident from the tilting of the trajectory, the range will be increased
from 8000 to 8082 m. So that according to mean range-table conditions, the
fuse setting of a length of 21 seconds relates to a striking range of 8082 m ; and
corresponding relations can be worked out for the other ranges.

The relations thus obtained between the striking range and the fuze setting,
plotted graphically, are found useful in practical work
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264 Solution of various trajectories [cH. viu

(d) The determination of the value of the mean lateral deflection is carried
out in the following manner, on the same example as before.

Suppose for instance, with »,=700m/sec, and a departure angle 12° 11’ 14" the
mean range is 9724, and the lateral deflection of the mean point of impact from
the plane of fire is Z,=69 m.

According to Hélie this gives the factor 4=0-00315.

In the other ranges, mentioned in (b) above, the value of 4 was 0-00370,
000349, 0°00515, 0°00777, 0-00699, 0-00724, 0-01276.

The points so obtained, plotted as functions of the angle of departure, give
for an angle of departure of 15° the value 4=0-00550, and thence by Hélie’s
formula a lateral deviation of 1§ degree.

A calculation of this kind is recorded in the form of a curve and the inter-
mediate values can then be read off.

Some examples of Range Tables.

1. Range table of the Mauser rifle M/71, according to Hebler’s results.

Calibre 1100 mm ; bore across the grooves 11'60 mm ; depth of grooves
030 mm ; length of rifling 550 mm ; number of grooves 4, breadth of the lands
4'3 mm, breadth of the grooves 4'3 mm, length of the bullet 27°5 mm, diameter
of the bullet 11-00 mm, weight of bullet 25'0 g, material soft lead, with paper
cover, charge 50 g, initial velocity 440 m/sec, weight of one m? of air 1-226 kg,
weight of rifle 4'5 kg, length of cartridge case 60 mm, weight of cartridge case
12:2 g, length of cartridge 78 mm, weight of complete loaded cartridge 42-8g,
sectional density of the bullet 0-263 g/mm? of the cross-section of the bore. The
table is given on p. 266.

Table of the ordinate y at different distances  from the muzzle.

Distance z in m

Range
inm '
100 } 200 300 : 400 500 600 700 | 800 | 900 | 1000
i ! ———
|
200 1 0-38! 0O —1-38 |
300 0841 093] 0O -203
400 (135 195 154 O - 2 61,
500 |1:87| 299 310 209 - 364
600 [2:48| 420 492} 452 ‘3 03; O —453
700 | 312{ 550| 686" 711 627 I 389! 0 -589
800 386 6:97| 90771005 993; 830 515| O -715 )
900 |[4'65] 856| 11:45, 13-23| 13-92| 1307| 10-71| 636] O - B'SGJ_"
1000 |[554(1033] 1411 1677 | 18:35| 1838| 1691 | 1344| 797| O

2. Range table for the infantry ritles M/88 and M/98 8, according to
v. Burgsdorff; see p. 267.

3. Example of an artillery range table. I
Extract from an old range table of the German heavy field gun C/73, for
shell and explosive shell.
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Initial velocity 442 m/sec, error in the angle of departure (jump)+ 5 degree.

1 2 3 4 5 6 7 8 9
S R - 22% 2| 83
v | S5 |g8E | 5| & | BRcE | B2s | B | 35F
2|25 | ESg | w8 | 5 | BPESE | 2e2| B | &°
& | 55 |38 |25 | o | 5233 |sEs| o | 282
<< |=<E|"s| B | £2¥5 | =3 £ | 3=%
= = o g g‘ = _R&
m degrees degrees| see m m m/sec m
100 O 30 % 02 01 45 424 _
200 | O 30 T (4] 0-2 42 407 —_
300 o 30 | 07 03 39 392 —_
1000 1% 31 285 2% 11 27 319 43
2000 44 32 6y 62 2-2 20 268 16
3000 T 34 12 103 32 15 233 8
4000 | 124% 37 191% | 16°2 4-2 12 208 6
5000 | 19 41 301% | 214 48 8 190 3 -
6000 | 29% 49 465 | 303 47 4 188 —

The angle of elevation in the second column is given in degrees and sixteenths
of a degree, while the lateral deflection in column 3 is in units of an angle for which

the arc is one-thousandth part of the radius, or 0-001 radian.

The zero of the graduation of the side deflection in the ordinary range table
is numbered 30. The third column gives in a simple way the measure of the right-
handed drift of the shell caused by the rifling.

Example. What is the drift at 4000 m ?
Column 3 gives 37, that is 7 from zero; thence the drift at 4000 m is

1055 % 4000=28 m.

The application of the results in columns 6 and 7 depends on the assumption
that the trajectory can be raised or lowered like a rigid line, in accordance with
the principle of tilting or swinging the trajectory; strictly speaking, this holds
only for a small amount of elevation or depression.

Column 6 enables us to find the height of the shell at every range, and to
find approximately the ordinate of the vertex.

The caleulation is made as follows: to determine, for example, in a range of
6000 m the height of the shell above the ground at a distance of 5000 m. The

. elevation of 5000 m is 19:% degrees, and for 6000 m is 295 degrees, which is
107 degrees greater. At 5000 m an extra elevation of ¢ degree will raise the
height of the point struck by 4:8 m, and so 10£° will raise it 163 x 4'8="782 m,
in round numbers ; and so in firing at a range of 6000 m, the shell at 5000 m will
be 782 m above the ground.

The height of the vertex above the ground in a range of 6000 m can be found
in the following empirical manuner: the vertex is at that distance from the
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268 Solution of various trajectories [cH. vinn

muzzle at which the sum of the corresponding angles of elevation and descent is .
equal to the elevation corresponding to the whole range.

Find the range at which the sum of the-angles in columns 2 and 4 is equal '
to 294%°, the elevation for 6000 m range. At 3000 m the sum is 75 +12=19¢;; '
at 4000 m the sum is 12.%+4191%=32%; the vertex must lie between the 3000
and the 4000 m range. A closer value is found at 3800m ; and at this range the
height ¥ of the shell above the ground is worked out.

Consult § 41, p. 244, on the calculation of the vertex ordinate by help of an
approximate formula, employed in conjunction with the range table.
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CHAPTER IX

Lateral deviations of a shell

§44. On lateral deviation of a shell in general.

When the same weapon, the same ammunition, and the same
sighting are used for firing at the same mark Z, the striking points
of the shells group themselves round a point of mean impact 7.

In general, the point 7' will have a lateral deviation from Z, due
to the following causes.

In the first place the sighting, and the angle of departure ¢, may
be wrong; this will be the case if the distance of the target has been
wrongly estimated; or the weapon may not be sighted correctly,
that is, the setting of the sight has not been measured correctly to
correspond with the scale divisions of the range.

Secondly, the ballistic coefficient ¢ may not have the normal
value, as taken from the range table, inasmuch as on the day of the
experiment the weight § of a cubic metre of air, as determined by
air temperature, height of barometer, humidity of the air, height
above the sea, is not the same as that employed in the range table:
in a few cases the shape of the point of the shell, its weight, and the
calibre may differ from the normal.

Thirdly, the initial velocity v, of the shell may differ from the
range table value, in consequence of the charge of powder being too
small or too great, or not at the normal temperature, or heated too
much in the bore of the gun.

Fourthly, the azimuth of the plane of fire may have been chosen
ncorrectly, since lateral deviations must be taken into account; such
deviations may arise from a side wind, rotation of the shell, or rotation
of the Earth, concerning which latter influence we do not at present
know whether it is important enough to be taken into account. In
rifles too a lateral deviation may arise from fixing the bayonet; more-
over there is the effect of the slope of the axis of the wheels of a gun,
or of the canting of the rifle.
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These deviations are constant lateral deflections, since, in general,
they occur to one side. They can be corrected, either by calculation
or observation.

By means of the sighting the deviation due to the rotation of
the shell, and the slant of the axle of the wheels may be allowed for;
the old spherical shells showed deviations in an indeterminate direc-
tion; but by the introduction of eccentric shells, and placing the
shell in the bore with the centre of gravity either up or down, these
deviations were made regular, and so could be calculated beforehand.

§ 45. Influence of a small alteration of the angle of departure,
or of the initial velocity, or of the ballistic coefficient on
the range.

I The retardation due to air resistance being cf (v), take a given
¢, ¢, v, to give a definite trajectory with range X.

When ¢ alters by A¢, and v, by Aw,, and ¢ by Ac, a neighbouring
trajectory arises with the same point of departure O, and a range
X +AX; it is required to calculate AX,

The most accurate determination of AX follows evidently from a
repetition of the trajectory calculation, for the new elements

¢+ Ad, ¢+ Ac, 1, + Ay,

An approximate caleulation can be made by means of the differ-
ential formulae, and strictly speaking these must be considered ;
separately for every solution; the assumption is made that the in-
finitely small alterations d¢, de, dv,, dX can be replaced with suffi-
cient accuracy by the finite small alterations A¢, Ac, Ay, AX, as
explained above in § 43.

As examples the differential formulae are developed here for the *
quadratic and the cubic laws of air resistance.
Remdig
1-206.P
mean numerical value; for instance, v < 240 m/sec, A, = 0014,

The range is calculated from the equation

In the first, ¢f (W) =%, o= M, where A, has a constant

v*sin 2¢ _
¢ =B(Z), Z=2c0X. ............... ¢y

By logarithmic differentiation of (1), we have
9 dv, , dsin2¢ dX _dB,

v0+sin2¢_X B’
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and B alters with Z, and therefore with ¢, and X, ignoring the
alteration of the.mean value factor «, and so .

OB oB
dB—éc—ldcl+a—XdX,
and here
0B _oB 2z _oB , . OB _dB 3Z_0dB ,
3, 0Z dc, oZ " GXTZ X" ax “o%

Denoting 2—7 by B, we have

dv, . d¢ dX B’

2—+Qtan2¢ < = c,a.dX+§—.2a.X.dc,. —(2)

B

. . B .
To obtain the fraction % in a convenient form, let us employ the

equation of the trajectory

y=axtan ¢ — 27‘20—@— B (2), where z=2¢,az (§ 35);

dy 9 B .
75 °F tan @ =tan ¢ — 22 o § (2.1:B+ = P 2c,a) ;

and at 0=—ow, 2= X,

therefore — tan w =

tan ¢ Z—W’ (ZXB + X*R'. ‘)cla)

tan¢+tanw 2R O
or tan § = sm 26 (2XB+ X*B'. 2¢,a),

= e QXB+ X°B 200 =2+ X 5 . 200
from (1); then the expression is obtained
F__1 tme—tané 3)
B 2¢aX tan ¢
Substituting in (2) we have
9 dv, , 2d¢ dX tanw—tan¢ dX  tanw—tan¢ de,

Uy * fan 2% X tan ¢ X 7 tang a’
dX tanw _ dv., 2d$  tanw—tan ¢ de, (4)
X tang tan2¢  tang o' T

where d¢ is measured in radlans and hence]
de, ,dR dé dP

0_1213,8 P
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Suppose for example v, becomes v, + dv,, but ¢ and ¢, remain con-
* stant; the alteration in the range X is calculated from

dX _2tan¢ dy,

X  tanew v,

272 Lateral deviations of « shell [cH. 1x 11
|
{

Or if the air density & alters by dé, then
dX __tanew—tan¢ d8

X tan w N
Rndig
1-206P

A= 0'(6)68, for values of v between 550 and 600 m/sec, and in
equation (1), Z = c,a’v,, X, where v, = v,cos ¢. Here a is the mean
value of sec8; for instance, according to Hélie, in § 23, a=/(sec ¢),
so that Z=~c,2,X. In this case Z depends on ¢, X, and v,.
Equation (2) will now be as follows:

With the cubic law, ¢f (v) =¢,v% ¢, = Az, where for example

dvo 2d¢ dX 10B ,.  10B, 138
tanqu"X“‘TaaXdX B3 %t By, e ()

3Z B, o4 B a7

BanX %5 T B,

= % (dX . covy +dey . v, X + dv., .6 X)

-2 (T 5+
Equation (3) is therefore replaced by
%.voch=tan::a;;an¢, or Z%’=tan:)a;:ban¢’
)
c_lX)g _ 3t.antxgr;—:anw (_1171:2 + tan&;;anw % + 2 ta:::lc:’t 2¢ do. (6)

By logarithmic differentiation of the expression for a vacuum, viz.;

2 81N 2¢ AX

X= eget————2 +2 cot 2¢. A,

1
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Formulae.

When only one of the quantities v, ¢, ¢, varies at a time, the

id

rclative alteration AA‘} of the range X, or its percentage change is

given, on the quadratic law, by
AX _ 2tané Ay

*X = m . % ) seeesestossisasanansnnns (1)
AX 2tan¢

3 =t fan2ptans R (2)
AX tan @ — tan ¢ Ac

T T T ane o e 3)

On the cubic law
AX 3tan¢—tanw Avo

5= e PRIRMETEI 4)
AX 2 tan ¢

X =4 m A¢, ..................... (5)
AX tan w — tan ¢ Ac
T T T Tama g e (6)

Here ¢ is proportional to R3 8, ¢, and varies inversely as P,
and so
Ac AR AS Az AP

e S T - (7)

Suppose, for instance, that only the air density & varies; then
ic = %8 ; and if this variation is due to an ascent of Ay, then

AS AX tanw—tan¢ :
5 ._—000011 . Ay, and Y=t ane - 000011 . Ay,

where w denotes the acute angle of descent.
The formulae (1) to (3) are chiefly employed for howitzers and
mortars, and (4) to (6) for guns and rifles.

Ezamples.

1. Suppose ¢=38", w=53°§, and that X=8230m, the air density being
8=1-27 kg/m?,

To determine the increase in range when this normal air density is reduced
to 122,

C. 18
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Here é;: %—6, with A8= -005; and so from (3) or (6)

tan 53°4 —tan 38° 005
AX=8230 ———W . 1—'2—7 =140m.
2. With a field gun, at ranges 100, 1000, 2000, 4000, 8000 m, and Av,=15 m/sec,
the alteration of range would be (@) on the quadratic law
AX =55, 54, 99, 177, 307 mn respectively,
(b) on the cubic law
AX=4, 49, 83,137,202 m;
or more exactly
AX =45, 493, 91, 123, 166 m.
An alteration in ¢ of A¢p=5' gave, according to the quadratic law,
AX=44, 44, 35,23, 5m,
or more exactly
: AX=43, 435, 36, 22, 5 m.
3. With a field howitzer, at the ranges 500, 1000, 2000, 4000, 5000 m, it was
found, when Avy=12 m/sec, and v,=295 m/sec.
(@) AX=38, 86, 176, 324, 383 m respectively, on the quadratic law,
(b) AX =32, 78, 163, 283, 319 m respectively, on the cubic law,
or more exactly
- AX=39, 83, 162, 300, 347 m.
And when A¢p=10,
(a) AX=48, 46, 40, 275, 19m, on the quadratic law,
or more exactly
(b) AX =60, 46, 385, 26'5, 18 m.
4. With a rifle, at the ranges 500, 1000, 1500 m, and with »,=875 m/sec, it
was found that, taking Av,=25,
(@) AX=20, 285, 39"5m, on the quadratic law,
or more exactly
(b)) AX=155, 14'0, 16'5m, on the cubic law,
or repeating the calculation
AX =255, 225, 28-0m.
So too, taking Ap=3/,
(a) AX=129, 65, 26, 15m, on the quadratic law,
or more exactly
(b) AX=110, 54'5, 27, 14 m.
These examples show uncertainty in the employment of the variation
formulae.
Consult the Notes on these and other variation formulae, compared with the
results in practice.

II. Simple formulae for practical use may now be considered. A
trajectory 1s supposed to be plotted by a series of points for a given
value of ¢, and 8, obtained by the arrangement described in Vol. 1,
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§ 37, and Vol. 111, § 184. The problem is to procced from point to
point, so as to reduce to a normal value ¢, or a normal density of the
air, for the construction of a range table.

For this purpose a trajectory 1 in the figure is to be altered into
another trajectory 2, having the

same origin O, initial velocity v, 1
and the same initial tangent. avand
We can either start with a £ i

" point P on the trajectory 1, and ’

move to a point P, on the same vertical, having the same z=0A4,
and calculate the corresponding PP, =Ay; or else with constant
y=AP we can procecd to a second point P,, at a further distance
Az = PP, to be calculated ; or finally we can make « and y both vary
by PB=Agz, and BP,=Ay. '

In the last case an arbitrary assumption must be made as to the
direction of PP,;. It can be assumed for example that the step from
P to P; may be taken over a given slope of the ground, or that it
proceeds along a line of equal.velocity v, or of equal horizontal
velocity v cos 6.

The calculation of these small alterations of z, or y, or of # and y
may be made on various assumptions. Thus for example the trajectory
through P may be taken as given by the appropriate rational algebraic
function of the third degree, as in the method of Piton-Bressant; and
there the corresponding system of equations was

fr . -
y=xtand)—wga.—saz(l+lfw), ............ (8)
x
tan 6 = tan ¢ -ng@ (24 8Kx), eveeeenen. (9)
v cos @ = —0 % ¢ (10)

m, ..................

3
2 (1+3Ke)i-1
t= G = e (11)

The empirical factor K is determined by the position of the
point P, so that in (8), =, ¥ %, ¢ are known: and from the preceding
it follows that K is proportional to the factor ¢, and this again to the
air density; so that

AK Ac A8 °
S it PR 12)

18—2
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In the step from P to P,, when « is left unaltered, there is the
alteration of K into X +dK
__9¢
2v,? cos® ¢
and when finite small differences are assumed instead of the exact
differential, we have from (12)

and dy = PP, = dK,

g de

A3/=_WK ?. ..................

This equation, in which K is to be considered as calculated from
(8), can serve for a reduction to the normal air density.

But it involves the difficulty that this calculation of X from (zy)
must be repeated: moreover the expressions for At and A (v cos 6)
are not very convenient.

The step from P to P, may also be taken so as to keep vcos @
constant; thus (10) shows that K« remains constant; so that

Moreover it follows from (11) that ¢ is also inversely proportional to
K, so that

t K ¢’
From (8) it follows by differentiation, keeping Kz constant, and j
dax de

&€ 4

bl

9.2zdx
2y cos? ¢

_ de ga*(1+ Kaz) _dc
——-tan¢.x—5+ 20,2 cos? ¢ 2?’

dy=tan ¢.dr— (1+ Kz)
and so from (8),
dy:df[—xtangb+2(wtan¢"?/)]=d’gc(“’tan¢_2y)'

Equation (9) can be treated in a similar manner: and so the
following system of the difference equations is obtained :
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A= =220 e (16)

Atan 8=+ ? (ban p—tand). ..o a7

These equations were first worked out in a different manner by
Dr C. Veithen: they serve in a very simple manner to reduce a
series of trajectories to normal air density.

They can also be deduced from Siacei’s system of solutions given

on p. 137; thus when ¢ changes into ¢ +dc, while u or veos 6 remains

constant, suppose « changes into z + dz and y into y + dy.

Since o and g were introduced as constants in the solution, the
quantities in brackets in the equations of § 23 remain unaltered : and
so it follows again that

zc, tc, (tan ¢ —tanf)c, (wtan ¢ — y)c?
remain constant.

The first three of these four conditions lead to equations (14), (16),
(17). And from the last it follows by differentiation that

(tan ¢ . dz — dy) ¢+ 2¢ dc(# tan p — y) = 0,

dy=tan¢.dx+2(é‘tan¢-—y)%9,

or, since dr=—2—

dy = _c (z tan ¢ — 2y),

as in (15); and thereby the equatlons above, (14) to (17) are again
established.

Dr C. Veithen has proved further that this deduction still holds
good, when the trajectory is supposed to be calculated in a number
of separate arcs, joined together; and so the system of equations
holds for high angle trajectories.

Finally, taking the case of the point of descent on the muzzle
horizon, C. Veithen has deduced the equations (3) to (6).

Ezrample. Suppose with v,=580m/sec, at ¢p=45°, the results were =6200 m,
y=3820m, t=24'5sec for an air density of 1-20 kg/m3. These results are to be
reduced to & normal air density of 1:22, so that A8= 4-002.

. 0-02

AT= - 155, 6200= - 103 m, x=6097 m,
002 . . -
B8y=+155 (6200 tan 45° - 2.3820)= —25m, y=3795m,
002 _ - . —o4
At=— 155, 245 = ~ 04 sec, t=241sec.
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§46. Deviations of the projectile due to slope of the axle of
the wheels, or to a canting of the sight of a rifle.

Shooting with a positive elevation and a positive angle of sight,
the shell deviates to the side of the lower wheel, or to the dip of the
sighting of the rifle.

To calculate the amount of this deviation, consider the weapon
first in the exact position, and then in the displaced position.

y [’”e:f St 0 Azis of Rolation” -, 5
_-
o5

: [Side Elevation] E
: S : :
[End Flevatioy] : ; |
V L EY % /, : . »
e [Ground Plan]
Sl S?

In the first case, as in the figure, VO is the line of sight directed
at the mark Z; SO the axis of the bore, ¢ = VOS the angle of eleva-
tion, approximately also the angle of departure, neglecting the effect
of jump.

In the second case, let 5,0 be the axis of the bore in space, while
the line of sight VO has preserved its direction, and so acts as an
axis of rotation, ¢ denoting the angle turned through.

Suppose a plane drawn perpendicular to the line of sight VO
through the sight V. This plane is shown in elevation in the figure;
and the point S of the axis of the bore comes to S; by the rotation.
The new position of the axis of the bore is shown in elevation
by 40, in plan by S,0. The new trajectory lies in the vertical plane
through 8,0, with a new angle of elevation ¢,; and sin ¢, is equal to
AV or heost, divided by the distance OS, so that

sin ¢, = OS COS T =8I PCOS T, .everirrrnrnnen Q)

and this gives the new angle of elevation ¢, in terms of the original ¢.
The lateral deviation due to this rotation is shown in plan by
the angle B, where
S,V _AS, h .
B =5y =ov =5nb
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and so
tan B=tan ¢ 8N .evvvuinnininninnenne, (2)
At a range X, the lateral deviation z is
=~ X tan B,
and so
z=Xtandsing, ...eoveeenns ceeereens 3)

and for small values of the angles ¢ and 7 (in degrees), we have
approximately
2= 28
3280

Ezample : $=4°35%, X=1800m, =5

y= 1800 x 4-58 x 5 =125 m
3280 .

To find the correction for the direction and height, J. Didion
supposes the rotation to be made, not about the line of sight, but
about the axis of the bore.

Under certain assumptions about the angle of departure the
initial tangent of the trajectory remains unaltered and also the
position of the point of impact on the vertical target at the range X.
The intersection of the prolongation of the line of sight on the con-
trary is displaced on the target. A shift to the side of the higher
wheel is then the requisite correction.

Concerning the different ways of eliminating the effect of the slope
of the platform of a gun, the reader should consult the memoir of
Ritter von Eberhard (see Note).

§47. Deflection due to wind, in a gun at rest or in motion.

So far it has been assumed that the air is at rest, relatively to
the gun, and the gun is at rest relatively to the surface of the Earth,
and that the rotation of the Earth about its axis is left out of
account.

Now the first two assumptions will be altered: and the gun and
the air will be assumed to be in motion.

In the compilation of a range table the firing must usually be
carried out in a wind; while the results of the ordinary range table
refer naturally to a calm. Consequently the measurements made for a
range table must first be corrected.
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And since alterations in direction and range arise in consequence
of the wind, the question is as to the extent of these deviations.

The calculations can be worked out from the general point of
view, and then applied to particular cases; but the inductive method
is here preferred, and applied in the sequel to various problems.

But these methods are always very uncertain.

The measurement of the wind is taken over a considerable period
of time, near the ground: but as a fact the wind blows in gusts, and
the velocity is variable within small intervals of time. Moreover the
velocity of the wind at the height where the shell is moving is often
very different from that near the ground (for numerical examples con-
sult § 111 in Vol. 111) and a general law connecting wind velocity
with the height is not known and cannot well be laid down.

Further, the direction of the wind at a great height is not the same
as at the ground, and it is probable that the wind as seen from below
will rotate in a clockwise direction.

Finally it is not impossible that a lifting force arises from a head
wind, exerting a supporting force on the surface of an elongated
shell in rotation.

On these grounds the formulae must be considered only as a
sort of approx1matlon and for range table purposes, the ﬁmng should
be carried out in air as calm as possible.

Otherwise the most convenient procedure is to carry out wind
measurements by means of the instantaneous anemometer, at a
convenient height, or by a succession of pilot balloons.

The resulting wind velocity is that at the average height, which
is about  of the height of the vertex.

It will be convenient to illustrate the relativity of motion by simple in-
stances.
A railway carriage in fig. 1 is proceeding along the rails BC from B to C with
uniform velocity.
A man is moving inside the carriage ;
A i ¢ and his absolute velocity over the ground
is represented by AC or m,. The relative
velocity of the man with respect to the
carriage is obtained by impressing on him
the reversed velocity w, of the carriage

?. Wo

Fig. 1.

by vector subtraction.

Thus if BC is the vector of the velocity of the carriage over the ground, and
A B the vector of the velocity of the man with respect to the carriage, then the
vector AC is the velocity of the man with respect to the ground.

Again let us suppose in fig. 2 a man to be walking on the deck of a ship,
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moving uniformly through the water; AJB is the vector of the man's velocity
relatively to the ship, and BC the voctor of the ship’s velocity through the water,
CD the vector of the velocity of the tide. Then the vector sum, or the side 4D,
is the velocity vector of the man with respect to the earth.

C B

Stream

C A
Fig. 2. Fig. 3.

When these velocities are uniform, the velocity diagram will give also the dis-
placement diagram. For instance, in fig. 3, a ship sails from 4 to B. The ship
must consequently be steered from 4 to € as if the water were at rest. This
point € is chosen so that while the stream flows from € to B, the ship would
move in still water from C to 4: then actually the ship moves from 4 to B; and
AC is the course of the ship through the water, CB the drift of the water over
the ground in the same time; 4B is the actual direction of the ship.

I. Gun at rest on the ground ; wind horizontal and parallel
to the plane of fire.

The horizontal wind velocity w, is taken as positive in the
direction of the horizontal com-
ponent of the initial velocity of the
shell.

After t seconds the horizontal
advance z of the shell is observed, ,ZZ 1 4%
as well as the range X and the Fig. 4.
time of flight " The initial velo-
city v, is represented by the vector 04, and the angle of departure
A0X by ¢.

The initial velocity reduced to a calm v, is the vector sum of v,
and the reversed wind velocity w,.

In the diagram of fig. 4, OB is the vector of the initial velocity
relatively to the wind, BA the vector velocity of the wind over the
ground, and the vector OA gives the initial velocity with respect to
the ground.

By this construction the angle of departure ¢, or BOX is
obtained after allowing for the wind.
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The diagram of the horizontal projection of the motion of the
shell is in this case shown very simply
o ) ¢ infig. 5; where OD =, is the abscissa
Fig. 5. of the shell after a time ¢, and DE = w,t
is the drift of the wind over the

ground ; OF = « the actual displacement of the shell, where

T =2+ Wyt,
and X=X, +w,T.

If after the time ¢ or 7, the quantities v, ¢, #, and X are
measured, they are supposed to be replaced by v,, ¢, #,, and X,.

Then too, as shown in fig. 4, it is evident that
v, 8in ¢, = v, sin ¢,
¥, COS by, = U, COS P — Wy,
V= (02— 20wy COS P + W), erririnninnnnn €))

v sin ¢

tan ¢p=—— 1 —
ér YpCos P — wp’

and also
o= —wpt, X,=X—w,T. .......... n(3)

In a head wind, w, must be taken as negative.

Ina Calm

-——— - -

Fig. 6.

The geometrical solution is carried out, as shown in fig. 6; for |
clearness the two trajectories are drawn out of scale and

X,=X—-w,T.
Ordinarily the correction is required in a form where the initial

velocity v, and the angle of departure ¢ have given values.

Trajectory 2 still requires to be modified to trajectory 3, with the
initial values of v, and ¢. !
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In passing from 2 to 3, with a following wind w,, the initial
velocity v, is inicreased to v,, and at the same time the angle of
departure ¢, decreased to ¢.

Here the range X is increased by AX,, so that in dealing with
the values of v, ¢, OC+ AX,, further calculation is required for a
reduction to a calm.

The value AX, is obtained approx1mate]y by F. Siacei in the

2
following manner: Suppose (%”) neglected in comparison with 1,
0

seeing that w, is small compared with »,; then

= /(vs* — 20,wp COS P + W) =~ ¥, '\/(1 —2%cog ¢)
Yo

w
=~v.,( —-v—pcos );
0

and Up— ¥y, OF AUy= + w,C08 ¢.
% Sin ¢ w
M = =t ( 2 )
oreover, tan ¢, 7cos & —w, an¢ (14 woos 3/
¢ Ad  wytan ¢

and tan ¢ — tan ¢,, or A tan ¢, or

cos®d  vco8¢

Wy .
A¢=——Esin ¢,
Yo
Wy .
or Avy=4wycosd, Adp=— Ssin ¢.
0

According to § 45, on the quadratic law, we have

AX,  2tan¢ 2 tan ¢ Ay,
X,  tan w tan 2¢ A+ Tnw v
in which w, the angle of descent, must be obtained by some method
of approximation.
Introducing the values of Ay, and A¢, and taking X = X,,
AX, wytan¢

[
we have = .
X  ytanwcose

Thence in trajectory 3 reduced to a calm, with initial values v,
and ¢, and the range OD or X/,
wp X tan ¢

X=X, +aX, =X —w”T+v,,tanwcos¢

et (5)

More generally, the coordinates (z, y) of any point of the tra-
jeetory, as well as the time of flight, can be measured on a photo-
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grammetric method in a following wind w,, and the reduction carried
out.

But so far no convenient simple formula for practical use has
been given.

Something of the kind can be obtained by replacing the tra-
jectory by a corresponding parapola of the 3rd order, and taking for
trajectory 2 in fig. 6 the form assumed by Piton-Bressant,

_ g ___g¥*K
y=axtan ¢ T (000 )t T(umoos gy’ (6)
in which K can be considered constant for the poir‘lt (zy) for a small
- alteration of the trajectory.

Then # may be left unaltered, and a calculation is made of the
change Ay with a following wind w,, due to a simultaneous increase
of the initial velocity v, by Aw,, and a decrease A¢ in the angle of
departure. According to the above

A (v, c08 ¢) =+ wy,
wp tan ¢
vpco8p

and A (tan ¢p)=—

and we have
Ay = xA (tan ¢) — b ga* (1 + Kz) A (v,cos )2

_awptan ¢ 9w, g Kw,
4y CoS ¢ (vcos ) (v,cos )’
or Ay =~ m-s = 2y —ztan @), ccooeiiiiiiiiiiii. )

Here z and y should refer to trajectory 2. But since it is not
usual to make up a range table from practice in a strong wind,
the corrections to be introduced are relatively small; and so it will
be sufficient to take # and y from the Range Table practice in the
calculation of Ay in equation (7).

The accuracy of formula (7) may be tested by taking the spec1a1
case of the point of descent on the muzzle horizon.

Here =X, ¥ =0, so that in (7)

Ay—%cos‘#Xtangb,

and this is the vertical ordinate at the point C' between trajectories
2 and 3.

Thus cp=2Y
tan @
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and ep=_aXtang

v, cos ¢ tan »
and X,'=X—pr+M

Ycosdtan o’
as In equation (5).

Rule for correction for the wind.

(a) For the point of descent on the muzzle horizon :

Suppose the range X and time of flight 7' observed with a follow-
ing wind wy; v, and ¢ as before.

To make the reduction to a calm, X is replaced approximately by

wy X tan
X',=X—pr+voc1:)s¢ taz?m’

- on the assumption of the quadratic law, for howitzer and mortar
fire ; and on the cubic law, for guns and rifles,

v wpX tan ¢
A/=X wPT+vocos¢atanw

tan w cos’¢
0 — " P
(l +cos’¢ tand )....(9)
The increase of range with a following wind w, is then in the

first case
_ _ wpXtan ¢
AX =T Vo8 ¢ tan o’
in which w, the acute angle of descent, is to be obtained by some

approximation. In a head wind w, is to be taken as negative.

(d) For any point (zy) of the trajectory, in a following wind w,,
after a time of ﬂlght t, replace z by @ — wpt, and at the same time,

y by

Cy—ztand). ..cocvvveveninnnen (11)

A further rule will be, that in taking wind influence into account
on a trajectory, an assumption can be made that the air density is
not the actual observed density 8, but a smaller value

5 ( Wy T)
¥/
Numerical example. Take v,=580 m/fsec, ¢=30°, X=10400 m, 7'=40 sec,
w=45° £=6600 m, y=2000 m, ¢=20 sec.
Takmg a wind velocity w,=6 m/sec, the alteration of range acoordmg to (10)
is 170 m.

Moreover, according to (11), instead of 2=6600 m and y=2000 m, after
allowing for the wind, #=6480 m, y=1997-6 m.

y_v,,cosd;
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286 Lateral deviations of a shell [cH.1X

II. Weapon at rest on the ground: wind blowing horizontally
and perpendicularly to the plane of fire.

It is assumed in the velocity diagram of fig. 7 that the wind is
perpendicular to the plane of fire, and blows with velocity w;, from
left to right looking down the range.
. The vector of the initial velocity
being OG, and the plane OGF the
plane of fire, the angle GOF is the
angle of departure.
The vector of the wind velocity -
wy is HF, perpendicular to OF.
Compound v, with the reversed
wind velocity —w, or the vector GJ; the vector sum OJ is the re- -
duced initial velocity v,, JOH the reduced angle of departure ¢,.
The vertical plane OJH, making an angle HOF or v with the
plane of fire OGQ'F, is the plane in which the motion of the shell must
be supposed to take place.

Obviously .
FG@=HJ, 0G*+ GJ*=0J?,
tan1p=_10{.§, tanqb,:bl%; |
or vsin p=v,8inP,, vEP=0%+w,? tanyr= ” gg‘; 5
.tan ¢ = Joa 2‘1)21:;4_"_ ) e (12)

these equations serve to determine the initial velocity », and angle of
departure ¢,, and the relation
We

tan = 7,€08 ¢

serves to determine the vertical plane OHJ, in which the movement
of the shell takes place.

In the displacement diagram of fig. 8 for the horizontal projection
of the motion of the shell, the plane of fire appears as the straight line
OK. .The straight line OM is drawn making with OK the angle .

Taking the values of v, and ¢, calculated from (12), as well as the
ballistic coefficient ¢, suppose the abscissa @, of the shell after the
time ¢, and the range X.= O} in the time of flight 7, to be calculated.
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At «, suppose the vector w,t,and at X, or OM the vector w, T or ML
to be drawn parallel to the wind direction, and perpendicular to OK.

Then L is the actual position of the shell after the time 7. 1In
fact OM is the horizontal motion with respect to the wind, ML the
drift of the wind over the ground, and OL is the path of the shell
relatively to the ground.

The range in the wind in the plane of fire is

O =X =X,co89Yr ecooviiveninernenens (14)

whence - is obtained from (13).
The lateral deviation of the shell, measured perpendicularly to
the plane of fire, is

KL=ML-MK or z=w,T—X,sinyr ......... (15)
v

GO

Fig. 8.

This treatment holds evidently for any point of the trajectory
The coordinates of such a point after a time ¢ in a side wind w, being
denoted by # and v, the lateral displacement by ¢, and the abscissa
after allowance for the wind by «,; then

z=z,c08vYr, {=wt—asinyr cooienininnns (16)
. . . w, .. .
Since ¥ 1s obtained from tan =m, and is in reality a very

small angle, it is allowable to replace @, by , and sin 4 by tan .,
Thus in general the formula to be employed for the lateral drift
of the shell due to wind, perpendicular to the plane of fire, is

{=wit—ax

r=w,T—X 2. ... (17)

Ypecos ¢’ %Co8 ¢’
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Ezample. As above, let v,=580 m/sec, ¢=30°, x=6600m, ¢=20 sec,
X=10400 m, 7=40 sec; let the wind blow across the range with velocity
w,= -6 m/fsec.

Here cos y=09999 ; equation (17) shows that

6600 x 6

after time =20 sec, (=6x20—m=41 m,
. 10400 x 6
after time 7'=40 sec, z—6x40—m-116m.

Remark 1. As stated already, the shell moves in the vertical plane OX, with
v, and ¢,, as if there were no wind.

If with given »,, ¢, and ballistic coefficient ¢, the coordinates #, and g, are to
be calculated at any point of the trajectory after a time of flight ¢, then, as shown
in fig. 9, the axis of an elongated shell, neglecting at first the nutational and pre-
cessional oscillations, remains parallel to the plane of fire OX,

M

Wind — ..x [Point of
w, 1 L pescent]
Fig. 9.

The ballistic coefficient ¢, employed for the motion of the shell OM, thus
requires to be somewhat increased.

Remark 2, The lateral deviation can also be obtained, by taking into account
the wind pressure which tends to drive the shell out of the vertical plane of fire O,
so that it describes a curve of double curvature over the ground, of which the hori-
zontal projection is the curve OZ in fig. 9. ’

In this motion, perpendicular to the plane OX, the shell moves broadside.
Suppose 2R to be the calibre, and the longitudinal section of the shell to have an
area 2RI or (2R)?I m2. :

Let the coordinate of the shell perpendicular to the plane OX after time ¢ be g
denoted by ¢, and let %; u. The velocity of the wind relatively to the skell is ]
wy—u, Then the wind pressure is equal to '

0122 (2R)? 1 (w,—u)?
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if the surface is flat. On tho cylindrical surface of the shell it is about two-thirds
of this.
P du

But the wind pressure is 7& where P denotes the weight of the shell ; so

we have the differential equation
Pdu 2
20122 2 )2
g & 3x012..(212) L (w0, = u)?;

and then in the twofold integration, the constants are determined so that ¢=0,

u=0, {=0.

The lateral deviation, due to wind, is then given by

- =w,t- %,loge (T4 Cy)yeiinnnirninenceereceernennns (18)
and
t=w, T~ élog(l+0w,T), ........................... (19)
where C=§ %Z:Rig

III. The weapon at rest on the ground: the wind blowing
horizontally at an acute angle with the plane of fire.

Suppose the wind to make an angle a with Oz; the wind velocity
being w.

The initial velocity v, is represented in perspective in fig. 10 by
the vector OC; and so the angle of departure ¢ is COB; the plane
COB is the plane of fire.

Y D E
4
[ w
[
> c
A !
I,' t "f, A
A 5 S
.E; ’J’ --..’.’%.....- N 0{(,0 w
.';"/ /4"’ \\w uomsw B
0 ,;:/: é\‘¢ N x 0 p T
8\«
2.
%
z F]
Fig. 10. Fig. 10a.

The vector CD of reversed wind velocity is combined with OC,
and so the resultant vector is 0D and the angle DOA or ¢, is the
reduced angle of departure.

The plane DOA, making an angle 8 with the plane of fire COB,

C. 19
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290 Lateral deviations of a shell [cH. 1X

is then the vertical plane in which the shell moves with the initial
elements v, and ¢,: it may be called conveniently the reduction plane.
From fig. 10, and its plan shown in fig. 10¢, it is seen at once that

OB=v,cosp, OA =v,cosp,, AD=BC=uv,sin¢p=yv,sin¢,,

wsin a

AB=DC=w, tan¢,= OB wecosa’

AD
04’ tan 8=
OA?=vy?cos®* p — 2 weos pcosa+uw?, OD* or v2=0A%+ AD-

The equations are then

U= (07— 20w COS P COS A+ W), sevrerrnninrennn. (20)
_ Yy sin ¢
fan ¢, = V(v cos’ d — 2v,weospeosa +w?) T D
wsina
tan ,B = m 3 reeveeresecesveserennerronnans (22)

and these equations give v,, ¢,, 8.

From the initial elements v, and ¢,, with the ballistic coefficient ¢,
the coordinates , and ¥, at any time ¢ can be calculated, as well as
those for the time of flight 7.

A
/;/V'\ Lay off X, in the line 04, from
Q B, K _; O atan angle 8 with the z-axis,
Y, \Ki and from the end 4, draw 4,J
“ S equal to the set of the wind «wT.
Fig. 11.

Then in the diagram of dis-
placement in fig. 11, representing the horizontal projection of the
motion of the shell, 04, represents the horizontal motion of the shell
relatively to the air, 4,J the motion of the wind over the ground; so
that OJ represents the path of the shell over the ground.

Draw the perpendicular JK to the z-axis; then OK represents
the range and KJ the wind deflection perpendicular to the plane of
fire OK.

From fig. 11 we get
X=X,cos B+wlcosa, ..coovvrnenininns (23)
z=wlsina—X,sinB. ..ccccenevrannnn.. (24)
Obviously too for any other point, after a time ¢,

z=az,cos B+wicosa, {=wtsina—z,sinpB.

Digitized by Microsoft ® l]



§47] Lateral deviations of a shell 291

IV. Dropping a bomb out of an aeroplane.

The aeroplane is supposed to be moving horizontally with uniform
velocity v, over the ground, and to be at O at the moment when the
bomb is dropped, at a height Y.

The movement of the bomb is such that it has a horizontal
velocity v,.

The former methods can be employed to calculate the range X,
time of flight 7', striking velocity v,
and angle of descent w; the ques-
tion of relative velocity need not
come into consideration.

In fig. 12 suppose B to be the
point on the ground: then

o

tanB:%.

P. Charbonnier has calculated
tables for a vacuum; and also for
air, taking spherical bombs, 15 cm {4 X
. . . . 77 re
in diameter, weighing 7-5 kg: the
calculation is made on the Euler-
Otto method for various heights, from 250 m up to 2000 n.

qw

Fig. 12,

V. Dropping a bomb from an aeroplane; wind blowing in the
same direction as the motion of the aeroplane.

As before, the velocity of the aeroplane is v, and of the wind w;
and the velocity of the aeroplane in a calm is denoted by v,, as
given by the revolutions of the propeller; then with a following wind

PW=VYpF We eernininiiininiieiiennanie, (25)

The calculation of the range X, and time of flight 7', with initial
velocity v,, and an angle of departure 0°, is carried out by methods

'\ described in §§ 20 to 43.

o
r.

L]
T o ——

Pt

The range in the wind is then
X=X, 4+wl .ceeevieeninn, reereaas (26)

When the assumption is made that the movements in the hori-
zontal and vertical directions can be calculated independently, and
19—2
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292 Lateral deviations of a shell [cH. IX

when the qua,dratlc law of air resistance is employed then the equa-
tion of motion in the horizontal direction is

@ = — cv?

a7
with v =v, when ¢t =0; then the horizontal velocity » or %’ at the
time ¢ is given by

. _ Uy
T 14cer,t
And since z, = 0 when ¢ = 0; then at time ¢
Z,= % log, (1 + cv,t).
Consequently the total range X is given by
X=wl += log A 4+e, Ty, venieeenenne. 27

where tan B = ; .

It is possible that v, = w, and so v,= 0; that is to say, the aero-
plane does not advance against the wind, but seems to be stationary to
an observer on the ground. In such a case, the range in the wind is

X=X, —wl,=Ylog(1+owT,)—wTh o........ (28
~log

This is the same as formula (19).

VI. Dropping a bomb out of an aeroplane with side-wind
from behind.

Suppose the aeroplane to be'at O at the moment of release, and |
moving with velocity v, over the ground; the wind velocity on the
ground being w and its direction making an angle a with the direction
of the track. .

We compound v, and —w to obtain »,; then on the velocity -
diagram of fig. 13, 0A is the vector of the velocity v, relatively to the
wind, AB the vector of the wind over the ground; OB the vector of
the velocity of the aeroplane over the ground. From fig. 13 we have

V=% — 2wy cos A+ U, ceeiiiiiiiiniinn, (29)
wsina .
tanﬂ—v—fwcosa' ..................... (39)
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The reduction plane makes an angle 8 with the vertical plane
through OB, and 8 is obtained by construction, or from equation (30).

Fig. 13. Fig. 14.

The range X, and time of flight 7', are then calculated, and the dis-
placement diagram of fig. 14 is drawn, in plan.

The line OP is drawn equal to X,, and PQ is parallel to the wind
and equal to the wind displacement w7,. Then @ is the actual point
of fall of the bomb.

If the perpendicular QC is dropped on OS, then OC is the range
along OS and CQ is the deflection.

The direction OP is that in which the axis of the flying machine
is directed, and the perpendicular DQ from @ on OP denotes the
deviation of the point of fall from the vertical plane through the
axis of the flying machine. ~

Thus the wind may be blowing at right angles to the direction of
the track ; then AB is perpendicular to 0S8, a = 90°, and

w
V2 = vt + wh, tan18=;)—.
0

The lateral deviation with respect to the direction of flight OS is
given by
z=wT,.—X,.sinB='wT,.—X,v-—, ............ (31)

A T 5 W—— (32)
in agreement with (15), (17) and (19).
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[CH. IX

VII. Firing from an aeroplane, with no wind.

The aeroplane is at O at the moment of firing. The motion is

horizontal with velocity s.

The flying machine is at a height Y, above the ground, and moves
along the track OS, as in figs. 15, 16, 17. Suppose the initial

b

velocity v, i1s known from the
range table; and the angle ¢
is determined from the sighting
and the range. These then are
the values of v, and ¢ which refer

: to a gun at rest.
P The plane of fire, 0AFD, in

. v, cos a fig. 15 makes an angle a with the
ol --- SR : :
j: N _. vertical plane through the direc-
s TTe  *i tion of motion, OC.
: —==Jp In fig. 15, OF represents the
Fig. 15. initial velocity v, of the projectile

relatively to the gun; F'G is the
velocity s of the gun over the ground, so that the resultant OG is the
initial velocity v, of the projectile over the ground.

The slope of OF is the angle of departure ¢ ; but relatively to the
ground or the air, the angle of departure is GOB or ¢,. The corre- -
sponding velocity diagram is drawn in fig. 16 for the horizontal
components.

Fig, 16.

Fig. 17.

But as it is assumed that the air is at rest relatively to the
ground, the projectile moves in its actual plane of flight without
being affected by the wind, and is influenced only by air resistance,
acting in the plane OBG.

But the motion of the shell, relatively to the ground, takes place
actually in the plane OBG ; and if no account is taken of deviations
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due to rotation or the slanting position of the axis, the trajectory is a
plane curve, and not one of double curvature.

The ballistic calculationi is then to be applied to the reduction
plane OB(@, employing the initial values v, and ¢,, as well as the
ballistic coefficient ¢ ; the range X, and time of flight 7' are to be
calculated.

As to the ballistic coefficient, it must be slightly increased, sinee
the axis of the projectile is parallel to the plane OAF. :

These values of v, and ¢,, as well as the angle 8 between plane
of fire and reduction plane, are given by the following equations: in
fig. 15

AF=BG@, and OB*= QA*+ 20A. ABcosa+ AB?,

v,2sin® ¢, =0 sin’ p, v, cos? ¢, = v, cos®  + 2v,8cos pcosa + 87,

ABsina
and an A= 5 i  dBoosa’
Thus
U= N (V2 + 2058 COS P COS A+ 87), +evuvenernnnnn. (33)
_ v, 8in ¢
tan ¢, = V(v cost ¢ + 2uyscos peosa+s?)’ T (.34)
tan B = — SSM& e, (35)

vcosp+scosa’

In the displacement diagram of fig. 17 0J, OH, and OS are
parallel to 04, OB, and OC respectively. The angle JOH is the
angle 8 calculated from (35); OH is made equal to range X, calcu-
lated from v,, ¢,, ¢

The perpendicular HK is drawn to 0J ; ahd HJ is parallel to OS.

OJ is the range obtained in the plane of fire without any move-
ment of the gun, and so it is the range of the projectile relatively to
the gun; JH = T, is the travel of the gun over the ground in the
same time; OH or X, is consequently the range of the projectile
relatively to the ground.

The lateral deviation of the projectile from the plane of fire
QAFD, due to the velocity of the gun, is

KH=X,sin B=sT,sina;
and the range
OK = X, cos B.
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The increase of range, due to the movement of the gun, is then
JK or sT, cosa. ‘
Take the case a=90°, cosa=0, sina=1; then

Up =AU+ 8%, coririiinieniiiiiiiiinann, (36)
_ ¥, 8in ¢ -
tan ¢, = T(oacost ¢T3 T 37
]
tan 8= reos g s (38)

The influence of the wind, set up by the aeroplane, may also be
considered by referring the motion of the projectile, not relatively to
the gun, but to the ground, over which the air is at rest. '

The range X, and time of flight T, are then calculated from v, and °
¢,, and OH in fig. 18 is drawn at an angle 8 with the vertical plane
through 04, making OH = X,.

‘Then H is the point of impact on the ground, OJ = X, cos B is the

. range, and JH = X, sin B is the
0 %059 Flane of Fire lateral deviation from the plane
of fire due to the motion of the
aeroplane.

If the range is to be calcu-
lated from v, and ¢ as initial data,

a correction for the wind is not
made. Since the usual calcula-
tions in External Ballistics are -
made on the assumption of a
calm, it 1s better to employ that vertical plane in the calculation of
the motion of the projectile, which refers to the motion in a calm, and
here this is the vertical plane through OH.

3

%
g
QI'

$

B

B L T L

U0 0
oIl

Fig. 18.

VIII. Firing from an aeroplane: direction of fire perpendicular
to the direction of motion: the wind blowing across the
direction of motion at an acute angle.

Denote the initial velocity of the projectile, referred to the gun
at rest, and the angle of departure by v, and ¢ respectively.

As shown in fig. 19, let the plane of fire be the vertical plane
through 04. Along OS and perpendicular to 04 is the horizontal
motion of the gun: denote the velocity by s = AC, relatively to the
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ground ; and denote the horizontal velocity of the wind over the ground
by w = BC; and the acute angle between the positive wind direction
and the positive direction of motion by a.

The velocity s, of the gun through the air is first determined, by
calculation or graphically: in the triangle ABC, w= BC and 8 = AC.

Consequently s, is given by the vector AB, and thus also B, the
angle between s, and s, is determined.

Thence the relative velocity with regard to the wind, v,, and the
corresponding departure angle, ¢,, are found.

Draw the series of lines 0ABCO in fig. 19; where O4 4fv,cos ¢,
A B is equal and parallel to the velocity s,, BC# w.
" Then OA is the horizontal velocity of the shell relatively to the

o v, P A PHlane of Fire 0 Plane of Fire P
slo B s S - E
NS X3 :
k\. S N .
g3 IS :
$3 c I s
3% = 33 :
33 ) >
~w ®\ - .
S g-%. N
A
Fig, 19. Fig. 20.

aeroplane, AB of the a,eroplane relatively to the air; BC the hori-
zontal velocity of the air over the ground: thence the line OC repre-
sents the initial horizontal velocity of the projectile over the ground

The movement of the projectile through the air takes place in
the vertical plane through OB; this is then the reduction plane. In
the diagram of fig. 19, OB represents the horizontal velocity com-
ponent v, cos ¢,, and this component is thus known. Thence since
v, 8in ¢ = v, sin ¢,, we have

tan ¢, = % (s)l; d’,

and so v, and ¢, are known.

Taking v,, ¢, and the ballistic coefficient ¢, the calculation is made,
for a calm, of the range X, on the level of the target, and the time of
flight T,.

Then in fig. 20, which shows the horizontal projection, a straight
line OM is drawn through the origin O parallel to the vector OB of
the velocity diagram, and made equal to the calculated range X,
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Through M draw the vector MN parallel to BC and equal to the set.
of the wind wT,. Then N represents the point of descent. From O
to NV a trajectory of double curvature is shown.

Draw through O a line parallel to OA and through N a line
parallel to AC; these lines intersect in a point P; and OP is the
range in the plane of fire: PN is the deflection from the plane of fire
due to wind and travel. .

It is evident that the foregoing may be made to apply to the case
where the firing is at any angle to the direction of travel.

These remarks must apply to Case 11, where ¢, is equal and opposite to w, AB
coincides with CB, and AC is zero.

In the triangle O4B of fig. 21, 04 is the horizontal component, v, cos ¢, of
the initial velocity of the projectile relatively to the machine ; 4B is the velocity

0 v, COS @ A(C) Plane of Fire N1y

"

JunInol; 20
Y0131 454 DT Y

]

M
Fig. 21. Fig. 22.

of the machine relatively to the air, that is, the velocity given by the revolutions
of the propeller in a calm ; so that OB is the horizontal component, », cos ¢y, of
the projectile through the air.

Similarly in fig. 22 OX is parallel to 0B, and the ca,lcula,tlon of the range X,
is made from %,, ¢, and the ballistic coefficient, to which the time of flight 7',
applies. Moreover through Af a parallel XV is drawn to B4 and made equal to
wT,. Then OP is the range, and PN is the lateral deviation due to wind.

IX. A ship is moving on a stream. A flying machine is moving

in the air, having a definite velocity relatively to the ship.

. The wind is blowing aslant of the travel of the machine.
The firing takes place in a slanting direction.

The case is stated merely to show how with these apparently
complicated relative velocities a simple treatment is possible with
the help of the velocity and displacement diagrams. A practical appli-
cation of the theory is not contemplated here.

In the velocity diagram OABCDE of fig. 23, let the vertical plane
through OA represent the plane of fire; and let OA represent the
horizontal component of the initial velocity relatively to the machine;
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AB the horizontal component of the velocity of the machine through
the air; BC the horizontal component of the air relatively to the ship;
DE the velocity of the stream relatively to the land, and CD the
velocity of the ship, relatively to the river.
Consequently CE is the velocity of the ship relatively to the
earth ; BD the velocity of the air over the stream ; BE that of the air
4 3

Fig. 23.

over the land; AC that of the machine relatively to the ship; 4D is
that relative to the stream ; A ¥ is that relative to the land; OB is the
horizontal component v, cos ¢, of the initial velocity of the projectile
through the air; OC the same relative to the ship, 0D relative to the
stream, OF relative to the land.

The plane in which the motion of the projectile appears to take
place is the vertical plane through
OB. Given v, cos ¢,, v, and ¢, can
be obtained. Thence with the aid of
the ballistic coefficient the range X,
and time of flight 7', are calculated.

Then in the displacement dia-
gram, fig. 24, draw 04,4, parallel
to 04 in fig. 23, and make OB, = X,
and the angle 4,0B,= A0B.

Draw through B, a parallel to BE
equal to the set of the wind, wZ,.
Then the point K is the point of impact of the projectile on the
ground. Draw the perpendicular £, 4, on OA4,,then 04, is the range
on the plane of fire relatively to the ground; A,E, the lateral
deviation due to travel and wind.

Or draw through B, a parallel to BC, equal to w,T,, where w, is
the velocity BC of the wind relative to the ship; then the point C,
is the point of impact relative to the steamer, the perpendicular C, 4,
is the lateral deviation, 04, is the range on the plane of fire, relative
to the steamer; and so on.
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§48. Deviation of the projectile due to rotation of the Earth.

Suppose a projectile is fired northwards from a point O on the
equator: the gun has a velocity to the East of about the same magni-
tude as the infantry bullet M. 71 at the beginning of its trajectory.

After a certain number of seconds the projectile strikes a point
O, further to the North, and this point is moving to the East with a
smaller velocity. The projectile does not then remain in the meridian
through O, but travels out of the meridian and more to the East.

On the other hand, if firing from O, in the northern hemisphere
to the South, the projectile remains, in consequence of the smaller
eastward velocity, always behind the meridian drawn through 0,, and
so it deviates to the West.

These deviations give rise also to alterations in the range, height
of vertex, and time of flight.

As to the quantitative determination of the deviation of the pro-
jectile due to rotation of the Earth, calculation for extreme cases in a
vacuum gives a lateral deviation of several hundred metres and some-
what less in the range: in air, it appears from calculation that these
deviations are of such a magnitude that they may be neglected in
comparison with other deviations arising in practice.

An experimental determination of such deviations, due to rotation
of the Earth, is beset by great dlfﬁcultles and would not be worth the
trouble and expense.

(A) Theory for a vacuum.

Take the point of departure of the projectile as the origin of a
system of coordinates: the axis of w is the horizontal tangent of the
parallel of latitude and positive to the East; the axis of y is horizontal
and a tangent to the meridian, positive to the North; the axis of z is
the line from the centre of the Earth, and positive upwards.

Denote the latitude of O by v, and the angular velocity of the
Earth, 27 + 24 x 60 x 60, by n.

The equations of motion of the projectile are then

2" =2nsing.y —2ncoSy. 2, i, 1)
Y = =208 Y., e (2)
2 =2ncoSy . & =g, i ®3)

the dashes denoting differentiation with respect to ¢.
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Therefore & =2n8Iny.Yy=20C08Y.24 @ .vcerrrennnnn. 4)
Ty ==2nsing.2+b i creereeenns 5)
Z=2nC08 Y. Z=gt+Civiviviiininiriiiiiiiniiens (6)

Substituting these values of %" and £’ in (1), we have
o'+ 4nx=2ncosry.gt+2nsiny.b—2ncosy.c. ......(7)

Here is a linear differential equation between & and ¢; it can be
integrated by the method of the Complementary Function, taking
the constants of integration such that the initial conditions are
t=0, &’'=a, 2=0.

Thence.x is known as a function of ¢, and «’ also, and thus (2) and
(3) can be integrated; and so the position of the projectile at any
time is known.

The results of the calculations are as follows:

Statement of results.

P s q ( _ sin'2nt) a .
&=5 (1 —cos 2nt) + 5n ¢ —5, )t 3,80 208, ceeerennnnn. (8)
= bt = p sin (t_sin 2nt)_ sin (t_“’+cos 2nt_i)
¥y= p v o q i 9 43 42
@sin v _
+=5, (cos2nt—1), .covrreennns 9
e t’—-g—ﬁ+ cos (t_sin2nt)+ o (t_2+cos2nt__l_)
T0 T g TPy 2n 7°087\3 dn? . 42
—QCO8Y cos Wt —
o (cos2nt—1), .ccovvvnnns (10)

and here, p=>bsiny —ccosry, g=g cosw.
In most cases we can put

1—~cos2nt 1 —cos 2nt 2nt — sin 2nt
— =nt}, = &1

2 = 2

2n - 4n? g 2n = n't,

Example. In the northern hemisphere :

Falling freely; =0, b=0, ¢=0, the deviation is to the East, # positive; and
to the South, y negative.

Shooting vertically upward; a=0, b=0, ¢=v,, the deviation is to the West
and to the South.

In a flat trajectory to the East, a=v,cos ¢, =0, c=v;sin ¢, there is a
deviation in the point of descent to right and an increase of range.

In a flat trajectory to the North, a=0, b=1v,cos ¢, c=v,sin ¢, there is a
deviation to the right and a slight alteration of range.
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302 Lateral deviations of a shell [oH. 1x

For a numerical example, take initial velocity v,==820 m/sec, angle of de-
parture ¢p=44°, firing to the North in latitude y=54°. Then a =0, 5==820 cos 44°,
¢=820sin 44°, y=54°; and in a vacuum and without taking into account the rota-
tion of the Earth, the time of flight to a point of descent on the muzzle horizon is
11613 sec. ' '

Substitute this number t=116 sec, and the other data in (8), and we have
2= 4350 m, to the right.

Thus in this case there is a deviation to the East, due to rotation. Later it
will be shown that this deviation is reduced to about one-half, when the influence
of air resistance is taken into account.

The southerly deviation in a body, falling freely, can be explained
geometrically in the following manner: Consider the cone with vertex
at the centre of the Earth, M, and having for base the parallel of latitude
through the origin of motion of the falling stone; consider also the
tangent plane to the cone along the generating line MO.

Since the stone is being carried round by the Earth to the East,
it has at the beginning of its fall an easterly velocity in the direction
OT of the tangent to the parallel of latitude. The only force acting on
the stone is that of gravity in the direction of the radius of the Earth.

Both lines lie in the tangent plane of the cone, and so the whole
motion of the stone must take place on this tangent plane, and the
stone describes in fact in this plane a very flat ellipse with a focus at
the centre of the Earth.

The stone can then be said to swerve in falling neither to the
south nor the north, so long as it remains on the surface of the cone;
on the other hand, it can be said to swerve to the north when it
comes inside the cone, and to the south when it goes into the space
outside.

But this tangent plane, in which the stone falls, coincides with the
cone only along the line OM, and so the stone proceeds after the
start into the space outside the cone, and so deviates to the South.

(B) General case, in a space full of air.

The properties of the trajectory are to be treated first without
taking into account the rotation of the Earth, in the manner of
Chap. VIII, or in the graphical method of § 31, for a space filled
with air.

The coordinates of the trajectory are then known at any time #;
suppose them denoted by &, 7, §; when firing to the East £ denotes
z in Chaps. III—VIII, ¢ the vertical height,  the horizontal drift of
the projectile due to its rotation; 5 will be negative with a right- .
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§ 48] Lateral deviations of a shell 303

handed rifling. Then let (z, ¥, z) denote the coordinates when rotation
of the Earth and air resistance are taken into account.
Then, evidently,

o' =2nsiny.y —2ncosy. 2 +E (), coorrerennn. an

yY'==2nsing. &+ 977 @), corrirririniiiens (12)

Z'=2ncosy. &+ (), onnn..n. eererereeereaeaes (13)
and so, by integration,

& =2nsiny.y—2ncosy.z+E ), cnreririinnnn. (14)

w==2nsiny. 2+ (£), ccocoviiiiiiiiiiiininn, (15)

Z=2ncosy. 2+ & @) coiiiiiiiiiiiiii, (16)

. Then if we return to the case where the Earth has no rotation,
and n =0, as in the assumption of Chaps. III—VIII, we have

17

mll — EU’ yll — 17//’ ZI, = ; ,
and also ¥=¥ y=v, =,

and the equations of motion for (x, 9, z) and (£, 5, £) are identical.
Here n and 4 are known constants, and &, 7, ¢ with their derivatives

are supposed to be known from the provisional calculation of the

problem when the Earth’s rotation is left out of account.
Substitute from (15) and (16) in (11), and we have

24 Ante =F(®), cccririiiiiiiiiiann, Qamn
where f@®)=2nsiny.q () —2ncosy.& @)+ &' (@)

This differential equation can be solved by the method of the variation
of constants; or by the employment of the Abdank-Abakanowitz in-
tegrator, it can be solved mechanically.

_ Consequently, « is found as a function of ¢ and ' as well.
A further mechanical integration of (12) and (13) will give y and 2
as functions of ¢, and so the position of the projectile is known at
any time under the influence of gravity, air resistance, and the rotation
of the Earth.

Integration of (17) gives

¢ ¢
=L sin ‘ZntJ. S (t) cos 2ntdt — l cos 2ntJ S (t)sin 2ntdt,
2n 0 2n 0

and thus we have T=EF+ AL, coiiiiiiiiiiiiiiinieinens I
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304 Lateral deviations of a shell [cH. 1xX

where
¢ .
Az =+ 2n sin g sin 2ntJ’ 7 8in 2ntdt + 2n sin « cos 2ntfn cos 2ntdt
. 0

— 2n cos y sin 2ntf§ sin 2ntdt — 2n cos vy cos 2nt f@’ cos 2ntdt

— 2nsin 2ntf‘g‘ cos 2ntdé — 2n cos 2nt ff sin 2ntdt ;

T SAY O e (I
t
Ay=—2nsinryf adt;
0
2=C+A02 iiiininnen, R (I )

¢
Az = 2n cos vyf adt,
0

where the value of z in (I) is to be substituted.
" The integrals, ‘

sin
[& n 650 aneas,

are to be evaluated by the Integraph.
No definite function of the law of air resistance need be assumed
here in this method, which has been employed by the author since

1909.
It is evident that the expressions in (I), (II), (IIT) hold good also
in a vacuum, r

Ezample. A shell, 305 cm calibre, weight 445 kg, length 3-5 calibres, radius
of point 2 calibres, is fired with initial velocity vp=820m/sec at an angle of de-
parture 44° to the North, in latitude y==54°; barometric height on the ground
760 mm, temperature of the air 16°5 C, relative - humidity 50 °/, ; final rifling of
the gun, 25 calibres.

Leaving out of account the rotation of the Earth, the calculations gave: in a.
vacuum, range 68500 m, height of vertex 16500 m; in air, range 33900 m,
abscissa of vertex 19400 m, ordinate of vertex 10980 m.

If the influence of the Earth’s rotation is to be calculated, then in the preceding
notation, n and { are calculated as functions of ¢ according to Chap. VIII, § 41,
and £ in § 563 and , :

1;=M0ta.nA.%(¢. t—fo Gdt),

where A is the final angle of twist, { the length of the shell in calibres, and A an
empirical factor, taken ag A=1-158; and thus it was found by the Integraph that.

T . (T

f 7 sin 2ntdt=15872, { 7 cos 2nt dt = 1824000,
0 Jo

f ¢ sin 2nzdt=4544, f ¢ cos 2ntdt = 688000,

f £ cos 2nedt= 80720, f £ sin 2nidt=2264.
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Thence at the end of the trajectory
Ar= (002542154 —-00053 - 590 - 0160 - 033 =156 m.
Further

T
f zdt=84282,
0
and so
Ay= - 906,
Thus by the rotation of the Earth, the range is shortened by 10 m, and a
deviation is given to the right of 156 m,

Remark 1. 8. D. Poisson employs the quadratic law in the equations of motion
with respect to a combination of air resistance and the rotation of the Earth:
that is, he assumes in (11) to (13)

"”__ dsndx__ d_sgf—— "
¢ "“(&) GTCHm AT TS (18)

p'==cdy, {('=-cs7~g

He then takes both influences into account simultaneously; thereby a double
integral arises, for which the limits alone can be assigned. For example, he finds
for a bomb of weight 51 kg, and 27 cm calibre, fired at ¢p=45° with »,=120 m/sec,
in the latitude of Paris, a deviation to the right of 09 to 1'2m, in a range of
1200 m. '

And with a shell of weight 90kg, and 33 cm calibre, at ¢ =45°, and in a range
of 4000 m he obtains, shooting to the East, a deviation to the right between 5 and
10m.

Remark 2. St Robert employs the system of coordinates in which the 2 and ¥
axes lie in the plane of fire; the axis of # horizontal and positive in the direction
of fire; the axis of y vertical upward ; the z-axis positive to the right of the plane
of fire. ]

The plane of fire is taken at an angle 8 with the meridian, and directed to the
South. ) )

The equations corresponding to (1), (2), (3) are obtained by a rotation of our
former 2y plane about the vertical ; and then on this notation the coordinates are
in the form

a'=—-2n(siny.Z+coSysiNB.¥) cirvriirrrirniiensannnn (19)

¥'=2ncosy(8inB.4' —cosB.2) =gy .ivciriiniriiiinnnns (20)

2’=2n(siny.2 +COSYCOS L. I) terirrrererrrrreeenaeransne (21)
This is for a vacuum; and in air the equations become

#'=-2n(Zsiny+y cosysin B)+£", veiriiiriniinennnas (22)

Y'=+2ncosy (@' sinB-7cosB)+7", ciieiiiiiiiiirnnnnnes (23)

7'=+42n (@' siny+ ¥ cosycos B)+{", seuniriinniiirannns «(24)

and here (£, », {) have their former signification, where rotation is not taken into
account ; £ the horizontal distancs, 5 the height of flight, and ¢ the lateral deviation
due to the rotation of the shell.

Integration gives

¥'=—2nsiny.z—2ncosysinB.y+&, .eerreiirnnnnen (25)

¥y =2ncosysinB.xr—2ncosycosB.z4+7n, .coiiiirennnns (26)

Z7=2nsiny.2+20co8ycosB. Y+ ciiirnnniiiiiiinn, @n
C. 20
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306 Lateral deviations of a shell . [cH.1X

Insert these values of 77,3/, 7 from (25) to (27) in (22) to (24), and neglect theterm

) ] . . . 2
2 =\ 5Ix60 560
involving #?, by comparison with =, since » (2 160 %< 60

2= —2nsiny.{—2ncosysinB.y + £,

2
; and we obtain

and corresponding results in the other equations; then by integration

#=¢—2nsin y’ﬁ)(dt—% cos y sin Bfr;dt,
and so too for the others.

This method of solution has been used lately by N. Sabudski, and the problem
reduced to finite formulae, for which he has calculated convenient tables.

It might possibly be objected to the St Robert-Sabudski method, that proof
is required .as to whether the omission of the term with n? is allowable in com-
parison with the term in z.

Because the method implies that — 2nz8in y and — 2ny cos y sin 8in comparison
with £, as well as 2nzcosysinB and 2nzcosycos8 in comparison with 5/, and
finally 2nx siny and 2nry cos y cos B in comparison with ¢, may be neglected.

The method of the author is free from these approximations; as a matter of
fact the example shows that the two methods give results in reasonable agreement,
80 that in this case the tables of Sabudski may be employed.

§ 49. The lateral deflection of the infantry
bullet with bayonet fixed.

It was observed for a long time that if the bayonet was fixed on the right-hand
side of the barrel, the bullet was deflected to the left.

In the official text-books of the seventies and eighties of the last century
(Stacharowski, Neumann, Weygand, Hentsch) this result was treated as a definite
fact, without any very obvious cause.

It was first supposed that the gases exercised a reactive pressure, which was
due to the blade of the bayonet: but this was soon found to be insufficient. The
deflection disappears, if the rifle is fired close to a wall and in a ditection parallel
to it, the bayonet having been removed. Further the deviation is sometimes
greater, if the bayonet is fixed at right angles to the bore. )

Formerly, about 15 or 18 years ago, the recoil of the rifle and bayonet was
treated as the motion of a rigid system due to the reaction of the gas pressure,
the rotation being to the right in consequence of the position of the centre of
gravity of the whole body: '

A matherhatical explanation based on these mechanical principles was given
by the author in 1885, and in 1888 it was worked out by F. Kétter, employing
the principle of angular momentum. ’

Later the author became acquainted with facts which could not be reconciled
with these explanations.

The deviation to the right with bayonet on the left, and vice verse, is not
universal, but depends on the design of rifle.

It was pointed out by A. Ch. Minarelli-Fitzgerald that in the Austrian rifle,
the deviation was sometimes to the right, and sometimes to the left. The same
was found to be the case with the German rifle M. 88.
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§ 49] Lateral deviations of a shell 307

Moreover if the recoil of the rifle M. 71 was prevented, and if the bayonet was
fixed not to the right, but below, a deviation to the left was still observed, although
it was to be expected from the second of the explanations that deviation would be
absent.

The real cause is found in the elastic deformation due to the initial transversal
vibrations of the barrel; consult Vol. 111, §§ 154 and 183. The vibrations of the
barrel of the rifle M. 71 were investigated by photographic methods by K. R. Koch
and the author, and the following results were obtained :

Just after the explosion the barrel begins a transverse vibration, in the
fundamental tone and its overtones. The muzzle then starts to move up and
down, right and left, and so performs elliptic vibrations.

As far as concerns the horizontal swing, the muzzle moves first to the left, then
back through the position of equilibrium to the right, and so on. The bullet
leaves the barrel while the muzzle is somewhat to the right, and the moment at
which the bullet issues is registered on the spark photograph. This bending of
the muzzle throws the bullet somewhat to the right. This happens when no
bayonet is tixed.

But now when the bayonet is fixed, the vibrations are naturally somewhat
slower, because the swinging mass is greater; and it might be supposed that the
forepart of the barrel is still bent to the left while the bullet is leaving the muzzle.

As a matter of fact the photograph shows both the slowing of the vibrations
and the deflection of the muzzle to the left at that instant. As for the direction
of the bullet, whether to right or left, the second overtone in these horizontal
vibrations appeared to be the chief factor, combined too with the first or third
overtone, Without the bayonet the time of vibration was about 00016 sec; it.
was 00036 sec when the bayonet was fixed. The bullet threw to the left, corre-
spouding to the deformation of the barrel and the phase of the vibration.

" The explanation of the effect in question can be found in the fact that the
elastic deformation of the barrel in the initial transversal vibrations is altered
by the mass of the bayonet attached.

By decreasing the amount of the powder, and using always the same rifle, it
was found that the bullet could be made to leave the bore at a later phase of the
second harmonic: consequently, with the bayonet always attached in the same
way, it was found possible to have deflections both to the right and to the left.

20—2
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CHAPTER X

Lateral deviations due to rotation of the shell

§ 50. Deviations of spherical shells.

The deviations of this nature with the old type of spherical
shell were irregular, and were produced by the rotation of the cannon
balls.

These rotations were caused by the fact that some play remained
between the cannon ball and the wall of the bore, and the ball re-
bounded several timnes at the wall of the bore; beside this the
escaping gases forced a way past the ball from time to time, and
this friction caused the ball to rotate.

With the object of controlling the rotation of the ball so as to
give a definite constant deviation, eccentric cannon balls were em-
ployed about the year 1830. ' :

If such a ball were placed in the bore with the centre of gravity
downwards, for instance, and fired off, the ball rotated, at first at
least, about a horizontal axis, with the upper side going forward and
the under side backward. This happened because the resultant
pressure of the gases was directed through the geometrical centre of
the ball, and this was situated above the centre of gravity.

+Y
C.G below

&
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&

x=2 (A7 :
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L2 AN SN M =2 AN e o7 <

L]

Thence a deviation of the centre of gravity of the ball down-,
wards, a shortening of the trajectory, and generally an increase in
the angle of descent followed as natural consequences.
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§ 50] Lateral deviations due to rotation of the shell 309

With centre of gravity upwards, the ball experienced a deviation
upward, and with angle of departure under 45° it had a lengthening
of the trajectory: on the other hand therc was a shortening of the
range with very great angles of departure.

In some oxtreme cases observed by Heim in 1840, the ball fell behind the
mortar, as shown in the figure.

1. Experiments at Metz, 1839, carried out by Didion, Morin and Piobert:
calibro 22 em, angle of departure 4° ¢', cccentricity 00015 m to 0:0020 m: thence
the lifting force, with centre of gravity above, was about 71 kg on a 279 kg shell.

Normal Range with eccentricity
Weight of | Weight of range ;
powder ball without | Centre of l .
N eccentricity é;raivxtydat Centre of gravity at first above
rst under
15 kg 266 kg 708 m
15, 299 ,, 708 ,, 518 | 950, with 86 turnsfsec
15, 279 ,, 708 ,, 548 941, ,, 8 "
L5, 266, | 869,
15, 299 ,, 869 ,, 712 1163, with 86 turns/sec
ll‘s » 279 ,, 869 ,, 731 1009, ,, 8 "
3 266 ,, 1170 ,, |
3 299 ,, 1170 ,, 1072 1557, with 8-6 turns/sec
3 279 ,, 1170 ,, 1117 1320, ,, 8 ”

2. Esperiments of Heim, Ulm 1840, with eccentric shell fired from a ten-
pounder mortar (p. 310).

3. Experimenuts of Heim with eccentric shell fired from a ten-pounder
howitzer (p. 311).

[The ranges are given in paces of 2:75 feet. The mean lateral deviation is the
difference between the sum of the deviations to one side and the other, divided
by the number of the shots.

The breadth of the space of the lateral deviations is taken as the sum of the
greatest deviations to one side and the other, when the shots fall to both sides,
and as the difference of the greatest and least deviation when the shots all fall to
one side.] :

The non-coincidence of the centre of gravity and of the centre of the sphere
was effected by hollowing out the cannon ball. The position of the centre of
gravity inside the ball was then determined by two observations.

The ball was figst allowed to swim in quicksilver, and the point was marked
that was uppermost; the line joining it to the centre of the sphere gave the
diameter in which lay the centre of gravity; the direction OSM (p. 311) was
thus known. Further to determine the distance OS between O the centre of the
sphere and the centre of gravity S, and thus to find the so-cdlled eccentricity, a
weight ¢ was hung at a fixed point of the surface, and the new position of equi-
librium was observed, as in the figure on p. 311.
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) S o =1 2
B § g % e E @
-] = 8 £ 254 = - £
| 2 g3 o g |8g: g o =R
& @ =] = g8 o o -
£ et ‘s 4 B 285 o = 25
2 - 5.8 5 s S8 g = o
< o 2 b = 2 48 L=l 8=
2 £% 8| = |[58% = §| =27
g g2 z S RE & g
< Q?I B =] =z
12 | 35 |abovecentre| 10 | 622 126 1-2toright| 22 2 Eg f;‘cf;zl &
127 35 |belowcentre| 10 | 5175 | 91 | 59toleft | 25 |{Zoright
12 | 35 |toright 10 | 5615 | 126 | 41-2toright| 18| 10 toright
12 | 55 | abovecentre| 10 | 540 73 189toleft | 38| 10 toleft
12 | 55 |belowcentre| 10 | 523 59 | 13-3toleft | 3g|{1toright
9 to left
12 | 55 |toright 3| 538 57 | 56-3toright| 24| 3toright
12| 55 |toleft 71 529 106 | 409toleft | 30| 7toleft
- 6 to left
12 [ 20 |abovecentre| 10 | 393 81 15 to left 3 {4 without
drift
. 2 to right
12 [ 20 | below centrc| 10 | 311 7? 3dtoleft | 11 8 to lofs
4 to right
6 ¢ 3 . 5 to left
12 70 | abovecentre| 10 [ 322 61 4'1toleft | 46 1 without
drift
3 to right
2 . 6 to left
121 70 | belowcentre| 10 | 369 60 13 toleft | 36 1 without
' drift
24 | 80 |abovecentre| 3| 132 64 | 143toleft | 83 ; ﬁg E%tht
. . . o | (4 toright
24 | 80 |belowcentre| 5| 611 113 | 23-8toright|102 1 to left
24 | 80 | toright 1| 375 — |258 toright
24 | 85 |[abovecentre{ 3| —293 | 68 [ 21 toright| 85 ? :g f é %glt
24 | 85 |[belowcentre| 2| 473 14 7'5toright| 3| 2toright
24 | 85 |to right 1] 255 — [306 toright
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g S g 2
i | 2 g 2| o |ET9 £ =
= 5 =8 2 £ ] = < =3
2| & | . 8% 5| g |8sE < | 3%
2 > S 5 a 3EE g = %5
g ) = X - £5 g ] = -
2 @ g% g @ g w3 ] = 83
5| % 28 |2]| ¢ |gEE| ~ sl E°
S ;on 4 A g 4] 2
e - . 4 to right
4| 135 | in front 10 717 266 O7toleft | 21 6 to loft
[ 3 to right
3| 135 | behind 10 720 | 154 | 2ltolefy | 26| Without
’ l6 to left
= -. 1 toright
4 | 13'5 | above centre| 10 907 223 76 toleft | 24 {9 to left
. . - 3to l'lght
) 3 | 13'5 | below centre| 10 568 71 1 toleft | 19 7 to left
13'5 | to right 5 646 114 38 toright| 18| 35 toright
g g g
3| 135 | toleft 5 613 78 30 toleft | 11| 5toleft
. . 5 | [5 toright
1} | 10 behind 10 | 1328 | 543 9 toleft | 92 5 to lett
: 4 . ; - 6 to right
1} | 10 above 11 2316 244 159 to right|173 5 10 left
, 4 toright
1} ! 10 below 10 1055 84 2 toleft | 21 6 to left
1} | 10 to left 10 1424 92 [133-8toleft 39| 10 toleft

The three forces, weight ¢ of the suspended mass, the upward thrust, and the
weight @ of the ball alone, considered as concentrated in the centre of gravity,
maintain the equilibrium: the angles a and 8
are measured, and then from the equation of Buogerncy
moments we have

grcos B=Qz sin q, Attacked
weigi!,

from which the magnitude of #, the eccentricity,
can be inferred. )

The rotational velocity is determined, either
by calculation from the gas and atmospherie .

* pressures, or with more certainty by measure- —— ¥ —

ment. Quicksiver ———

A screen was set up at a short distance from Q
the muzzle; marks placed on the shell made
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a record in its passage through the screen, and so the rotational position of
the ball was known. For example, it was found that with balls of 15 cm calibre,
and with a charge of 0'5 kg of powder, the ball at-the start was making 188
turns a second ; this corresponds to an initial circumferential velocity of rotation
of 5 m/sec, equal to g of the velocity of translation.

The explanation of the deviation of shells, due to rotation, has been debated
by ballisticians since the middle of the eighteenth century, partly because the
Berlin Academy proposed this subject for a Prize Essay. '

The names of the following may be mentioned: Robins 1742, on the altera-
tion of the direction of the air resistance due to the rotation: Euler 1745, on the
effect of the irregular rounding of the ball, and of the gyroscopic effect : Lombard
in 1783, and Poisson later: Rohde in 1795, who sought for the effect in the
driving force of the fuse: Hutton 1812, Gassendi 1819, Paixhans 1822, Ter-
quem 1826, Neumann, on the centrifugal force of the shell as the cause of the

deviation: Timmerhans 1841, who argued correctly that the

Q cause of the deviation must lie outside the bore, because the
B 4 drift increased more rapidly than the range. Didion
{ *\ 1841 and Otto 1843 came very nearly to the right explana-

tion; Otto remarked that “If two elements of surface A4°

and B are taken, equidistant from the diameter lying in the

T direction of the motion of flight, the element B, which has its

velocity increased by the rotation, condenses the air more than

the element A, which has its velocity diminished by the rotation.” Otto has not

assumed that the layer of air, in contact with the surface of the ball, must adhere
to it, which would have given the solution for the case of the spherical shell.

The methods of Poisson (1839) and Magnus (1852) must now be
considered.

S. D. Poisson proceeded in a purely theoretical manner; he cal-
culated the influence of the rotation of the Earth, and proved that
it did not suffice to explain so great a deviation.

Next he teok into account the differences of air density round
the shell, which may be supposed to be rotating about a horizontal
axis, with the upper side going forward relatively to the lower
side.

The air density in consequence is greater in the front than in the
rear of the shell; and so he concluded that the friction between the
shell and the air would be greater in front than behind. The ball
will be urged upward in consequence, just like a ball rotating in the
same way in contact with a rough cushion in front, and seeking to
roll upward on the cushion. (Similar effects are well known with
bowls, billiard balls, etc.) This effect is called the Poisson effect, or
cushioning. Poisson recognised that this effect of the tangential
air friction could not account for the amount of the actual deviation,
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" but he knew little of the effects of the influence of air density on
air friction. -

With reference to this it may be pointed out that the Newton-
Maxwell law on the independence of air friction and density has
only been proved experimentally within the limits of atmospheric
pressure; the friction seems to diminish with an increase in the
density and temperature.

Moreover, in the case of a sphere, rotating about a horizontal
axis with the upper side moving forward, it is deflected not upwards
but downwards.

Poisson attempted also to take into account the effect of an ir-
regular rounding of the shell.

A satisfactory explanation was first given in 1852 by the well-
known physicist G. Magnus, based on experiments with a rotating
cylinder, against which a stream of air
was blown, as in the figure. Hind-~ A.»

The ball is supposed to be moving " g
horizontally forward, from left to right;
or conversely, the centre of gravity of
the ball is held at rest, and the stream
of air is directed at it from right to left.

The sphere can be set in rotation,
about a horizontal axis through the fixed
centre of gravity, in the direction shown
by the arrows.

The air, adhering to the sphere, is now carried round with it;
on the under side, 0, in the same direction as the current of air, on the
upper side, B, in the opposite direction.

Then on hydrodynamical principles, there ensues an increase of
Pressure above, and a diminution below.

To prove the fact' that the pressure is increased at B and
diminished at C, let us put two little flags at 4 and D; the flag at
A is driven away from the sphere, and the flag at D is attracted
to it. .
At B the two streams are opposed, the air particles are driven to
the side, and an increase of pressure is caused in the neighbourhood.
At C a swift stream overtakes a slower, and a drop in pressure is
caused, just as in the air-pump on the next page, where a dimi-
nution of pressure occurs in the stream of air A B.

The consequence is an excess of pressure above the ball, and
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a deflection of the centre of gravity of the sphere downwards, as
if the weight of the ball were In-

creased. .
- The result will then be as follows :
— 4 ir Slream 8

<& Deflection downward (or upward) if
v the sphere rotates about-a horizontal
axis and turns forward above (or back-
ward); and deflection to the right (or
" left) if the sphere rotates about a
vertical axis from the left forward (or backward)

Lately the matter has been described in a different way by
F. W. Lanchester, England. He takes into account the surface of
instability which stretches to the rear of the flying body, but it 1s
not possible to enter into further details.

A quantitative theory of the deviation of a sphere under the
influence of the adhering air (Magnus effect) was attempted later by
Hélie and also by Tait. Tait started on the analogous deviation of a
golf or tennis ball, and assumed a deviating force proportional to the
product of the veloclty of translation, v, and of the velocity of rota-
tion, the latter to be treated as constant. The deviating force is
then proportional to » alone; and for a rotation about a horizontal
axis, from above forward, ¢ must be replaced by g— uv, as pointed
out already by Didion.

a)

coamore

v 7N == / S I = I et =

\
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Calculation shows that with this sort of rotation a path is
obtained, which at the ends is concave upwards. And it is not im-
possible that the curve may have a vertex in the shape of a sharp
point directed upward.

In consequence, in a discussion of the case of a spherical shell
when rotation is taken into.account, the figures will require to be
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altered to some extent. For further details and the literature of
the subject, consult the Report made by G. W. Walker in the
Encyclopaedia of Mathematwal Sciences, Vol. 1v, 9, 2¢, “ Games and
Sport.”

Some cxperlments were made too by Tait on rotating wooden
balls, suspended by wires.

Colonel Ludwig constructed in 1853 a machine, by means of
which the influence of the rotation of a sphere on the shape of the
trajectory could be demonstrated as in the figure.

§51. Deviation of rotating elongated shell.” Results of
experiment.

The effort to obtain results by an increase in the mass of the
shell without a simultaneous increase in the calibre, led up to the
systematic employment of elongated shells; and this led again to
the introduction of helical grooves in the bore, whereby the shell
received a rotation, more or less rapid, about the long axis, as a
means of ensuring stability of flight through the air.

Even before the introduction of firearms, with spears and arrows,
a rotation about the long axis was provided for the same reason.

In the case of rotating elongated shells, deviations arise of definite
direction, due to the rotation of the shell, and these are both in the
plane of fire and perpendicular to it.

The latter, as the most 1mp0rtant will receive closer attention in
the sequel. .

With right-handed rifling, the deviation is generally to the right,
and to the left in left- handed rifling, as for ipstance in the Italian
field gun.

The deviation increases more rapidly than the range; the tra-
Jectory is consequently a curve of double curvature; and with right-
handed rifling, at least in the vast majority of cases, the curve.runs
to the right of the plane of fire and the horizontal projection, seen

from the plane of fire, is in general convex.

These lateral deviations, as they are of considerable magnitude,
are well known in artillery work and are corrected by adjusting
the sights.

As for the absolute magnitude of the lateral deviation for direct
fire, with an angle of departure between 0° and 45°, some numerical

" values are here given, which were obtained with the French guns.

it el
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According to Hélie the French 16 ¢cm gun was used, calibre
162:3 mm, and final angle of twist 6° 30"; weight 304 kg, length
371 mm, and semi-angle of the point of the ogive v = 41°51’. The
initial velocity v, was 334 m/sec, error in the angle of departure
(jump) 12"

In the following table the range is given, the angle of de-
parture ¢, the lateral deviation due to the rotation of the shell, and
the number of rounds.

Range Angle of departure| Lateral deviation | Number of rounds
X metres - z metres n

1806 5° 24’ 18" 72 ' 70

3108 10° 17 43”7 290 90

5688 25° 127 0" 182-0 80

6579 35°12° 0" 3245 60

The lateral deviation increases more rapidly than the range, and
thus the tfajectory is a curve of double curvature; this is seen
further from the following table for the lateral deviation given by
" the French field gun M. 1897; calibre 75 mm, constant angle of
rifling 7°, maximum gas' pressure 2400 kg/em?, weight of the
shrapnel 7-24 kg, length of shell 290 mm, initial velocity v, = 529
m/sec, jump + 7°; right-handed rifling.

1
Range | Angle of departure| Drift, right, | Range | Angle of departure | Drift, righs,
X ] z X @ z

1000 1°. 6 04 6000 147 3 540
2000 2° 43 2-2 7000 18° 50 950
3000 4° 46’ 66 8000 25° 53 1729
4000 7° 16 149 8500 32° 41 264°3
5000 10° 19 293

Experiment has shown that, under given conditions, the lateral drift
on the muzzle-horizon increases with the calibre, the final angle of twist,
the initial velocity of the shell, the angle of departure, and the blunt-
ness of the point of the shell. As regards the angle of departure
this holds only within certain limits, which will be investigated in
the sequel. It decreases, however, when the weight of the shell is
increased.
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So also with infantry bullets, fired from rifled weapons, there
must be a lateral deviation, in consequence of the rotation of the
bullet.

But with the small angles of departure, ordinarily employed, this
deviation is scarcely to be recognised, and may easily be concealed
by the natural scattering of the bullets.

The small mass of the rifle bullet is more sensitive than the
larger mass of the artillery shell.

The measured range of rifles does not extend beyond 2000 m.
Theoretically, the infantry rifle M. 71 should give at 1000 m a
lateral deviation of 1'7 to 34 m. On the other hand the breadth of
the 50 per cent. probability circle (according to Hebler) would be
about 31 m: so it is clear that for the rifle M. 71 the drift could
not easily be settled with certainty.

Observations with rifle bullets are few in number (Thiel, Krause,
Quinaux). G. Thiel found by a method, not altogether free from
. objection, a 36 cm drift at 300 m with the rifle M. 71. According to
Krause, with the rifle M. 88, the drift to the right at 1000 m range
was 1m, .

In high angle trajectories, that is with an angle of departure
between 45° and 90°, other effects are noticed.

If the charge is kept unaltered, but if the angle of departure
is increased more and more, then at first the drift increases.

But after a certain angle of departure is exceeded, the lateral
drift alters its direction in an irregular manner, so that with right-
handed rifling a drift to the left may be observed, and wvice versa.

The critical angle, where this effect begins, lies somewhere
between 55° and 85°, according to the nature of the weapon and its
projectile.

When the angle of departure is increased still further beyond
this limit, the deviation is to the left with right-handed rifling,
and to the right with left-handed twist, until finally the drifc dis-
appears with vertical fire.

Some measurements, quoted by Hélie, are as follows:

(a¢) French 16 cm gun; calibre 1623 mm, final angle of twist
6° (left-handed); weight of shell 31-49 kg, initial velocity of the
shell 323 m/sec; length 371 mm; semi-angle of opening ¢ = 41° 51;
experiments in 1869,

(b) French 10 cm gun; calibre 100 mm ; final angle of twist 6°;
" ogival head of shell with a semi-angle of opening v = 44° 26". Ex-
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periments of 1881, with two different weights, lengths, and initial
velocities.
Lateral deviation
Angle of gel"“t“"e with left-handed rifling
z
45° 386 m, left
60° 562 ,,
70° 715 ,, ,,
75° 328 m, right
80° 290 ,,
Weight 12 kg, Weight 14 kg,
Length 343 mm, Length 392 mm,
v=535'5 m/sec vy=504"5 m/sec
| Lateral deviation, Lateral deviation,
- | Angle of departure left-hand twist Angle of departure left-hand twist
(] z ] 2
.
42° & 5259 left 42° 4 4302 left
57° 4 5339 ,, 57° 4 4215 ,,
69° 4’ | 8290 ,, 69° 4’ 6408 ,,
80° 4 | 3650 right 80° 4 ' 4203 right

Consequently, with these two guns, the deviation changes sign
between 70° and 80°.

At the same time 1t was observed, that with left-hand twist and
drift to the right, or right-hand twist and drift to the left, the shell
struck the ground base first.

With bullets the same change must be present; this takes place
at 82° with the bullet of the French infantry.” At this elevation the
maximum drift to the right must be unstable and change into the
maximum drift to the left. :

In consequence of this irregularity, the change will show itself
in equal drifts to the right and left at a certain definite elevation,
and at a greater elevation the left-hand drift will begin to pre-
ponderate.

Shooting vertically upward, the regular lateral deviation must
vanish again. In fact, it is only the influence of the wind and the
error in the angle of departure that can produce a deviation from
the vertical direction of motion.
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Besides, the shell in such a casc remains for the most part
parallel to itself, and so arrives again with the base downward.

§ 52. What is the nature of the flight of an elongated
rotating shell P

Some of the facts concerning the lateral deviations due to the
rotation of the shell and the position of the point of descent on
the muzzle horizon have already been mentioned.

Before investigating these lateral deviations, the question arises
as to what is the reason why an ordinary artillery projectile, fired
from a rifled gun at an angle of elevation between 0° and 50°, always,
or nearly always, strikes the ground with the point foremost ?

The shell is like a spinning top. It might thus be expected
that the axis of the shell will remain parallel to itself; and that
the shell will strike the ground in a slanting position, so that the
base will be the first part to touch the ground.

Three cases arise, according to the degree of stability of the shell.

(a) Stability of the shell too great.

In this case the axis of the shell appears to remain parallel to
itself, as represented 1in fig. .

If the initial velocity is small enough, the position of the axis
of the shell in the air can be followed clearly by the eye, and the
shell strikes the ground with a part of the base.

But this parallelism of the axis is only apparent; actually the
point of the shell, as seen from the gun, must point somewhat to the
right with a right-hand twist, and the axis of the shell must make
an angle with the horizon slightly less than the departure angle.

a)

In this case the drift is great; the range is in general somewhat
Jess than in a normal case. On the other hand, it seems that in
consequence of the frictional drag of the air against the shell
in this sort of flight, the range in extreme cases can prove to be
greater than in a vacuum: this has been attested by Minarellj
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and N. Sabudski. Such would be the case when the rotation of the
shell or its moment of inertia about the axis of figure is too great,
or if the length of the shell has been chosen too small in relation
to the angle of the rifling.

() Stabelity of the shell too small. -

This state is present when, for instance, the angle of twist is too
small, or the length of the shell has been made too large, or un-
symmetrical lateral shock arises from the escaping gases as the shell
leaves the muzzle of the gun.

The axis of the shell then makes violent nutational gyrations
about the centre of gravity, as shown in the figure.

.\

\\\ :

b)

There are visible conical vibrations about the instantaneous
tangent of the trajectory as axis of the cone: a closer description of
the results will follow later on.

In extreme cases the shell appears as a large disc, when observed
from the gun; the range is much too small: the errors are great.
A strong whizzing is to be heard and there are powerful periodic
impulses in the flight through the air.

(¢) Stabelity of the shell correct.

The shell flies so that the axis coincides with the instantaneous
tangent to the path of the centre of gravity. When the initial

velocity of the shell is small enough, and the trajectory is observed
from the side, the point of the shell is seen directed upward as far as
the vertex_ of the trajectory; at the vertex the axis of the shell is
horizontal : and then the point of the shell sinks down, till finally
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it arrives on the ground with the slope of its axis equal to the angle
of descent,.

It is often considered that this sort of motion is similar to that
of an arrow.

It is characteristic of the motion of an arrow that if its axis is
deflected from the direction of the tangent to its path from any
cause, a reaction arises at once from the air resistance, urging the
axis of the arrow back again into the direction of the tangent, and
the moment of the forces increases with the angle made by the axis
of the arrow with the tangent. The arrow would fly automatically in
the direction of the tangent if the centre of gravity were near the
front, at a distance from the rear end of about § to 4 of the whole

arrow length, and if the rear end was of appropriate shape. In
this case the resultant of the air resistance meets the axis behind
the centre of gravity, and so the moment of the reacting couple
increases with the angle between the axis of the arrow and the
tangent, as shown in the figure.

But such an arrow-like action cannot exist here, as in an
elongated shell of usual form and distribution of mass, the inter-
section of the resultant air resistance with the axis always lies ahead
of the centre of gravity, even when the axis of the shell makes an
angle with the tangent to the path, reaching from 0° up to 85°
or 90°. This is shown from the calculations and experiments of
E. Kummer (see § 12), at low velocities, and can easily be extended
to high. velocities by a test of the following nature: Take an infantry
bullet and place it so as to be free to rotate about an axis perpen-
dicular to the axis of figure, and set the axis of the bullet at
angles of 0° 3% 10° 15° 20° ... with an outflow of compressed air
from a receiver, with the point of the bullet towards the flow of
air; then open the air valve. The direction of thé first impulse of
the air received on the axis of the bullet shows clearly that the
point of action of the air resistance lies between the head of the
bullet and the centre of gravity.

C 21
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Moreover, the arrow-like action of a rotating elongated pro-
jectile is merely apparent, and the nature of the motion of the
‘elongated shell is in reality not identical with the flight of an
arrow.

As a matter of fact the axis of the shell does not remain exactly
in the tangent to the path; but the point of the shell is found
alternately above and below the tangent, and, neglecting nutation,
it is permanently to the right of the vertical plane through the
tangent. These details of the movement of the shell are to be taken
into consideration later on, in § 54, ete.

§ 53. Various explanations of the lateral deviation or drift of
a rotating elongated shell.

A purely qualitative explanation of the regular lateral devia-
tion of an elongated projectile, fired from a gun rifled with a right-
handed twist, may now be given: a quantitative treatment will
follow in § 56.

In a vacuum the axis of the shell would retain its original direction
in space, provided it were a principal axis and also the axis of
original rotation, if nutations due to shock were ignored. Gravity
acts solely in producing a curvature of the path of the centre of
gravity in the plane of fire, and cannot produce a double curvature;
this would have to be due to some other force, acting at right angles
to the plane of fire.

As to the “centrifugal force of the shell,” acting as a deviating
force, many erroneous opinions have been expressed.

A centrifugal force can only be taken into account when a
body rotating about an axis reacts on another body, and con-
versely.

This is the case, for instance, when the mutual action between two
particles of the same rotating shell is considered, as in the treatment
of the rigidity of the body; or else when the movement of shrapnel-
shell, or explosive shell is considered, bursting after the explosion.
In an instruction book published in 1894 it is stated: “ Concerning
the cause of the drift to the right, different views are given. It can
be explained, for example, as follows: Since the bullet rotates from
left to right, seen from behind, the rotation in the left-hand half
acts against the attraction of the Earth, whereas it works with
gravity in the right-hand half.
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“The swing to the right is thus stronger, and the bullet deviates
out of the vertical plane to the right, and this increases the further
the bullet flies.” ‘

It this explanation had any truth in it, a millstone, or the fly-
wheel of a machine, or a circular saw, would jump out of their
bearings, if the covers were removed.

There are, as a matter of fact, three main causcs at work, and
these will be considered separately.

(a) The action of the air adhering to the shell.

Suppose an elongated shell to be fired at an angle of 50°, and
that the centre of gravity has reached the neighbourhood of the
vertex S. There seems no cause at work to alter the direction in space
of the axis of the rotating elongated shell : and so it makes an angle
of 50° with the tangent to the trajectory, as in the figure.

Instead of this it can be assumed that the centre of gravity of
the shell is at rest in space, and that the air streams past it with a
corresponding velocity, parallel to the tangent to the path.

D

Tangent o the Palt
B

This stream of air is shown in the figure by the curves B and D,
with the stream B on the near side, and the stream D on the far
side of the rotating shell.

But then, in addition, the air adhering to the shell will be whirled
round by it. This adhering air moves round the near side of the shell
in the direction of the arrow A4 and so has a component of velocity
in the same direction as the current B of the first-named air stream.
On the far side of the shell on the contrary, the adhering air, moving
in the direction of the arrow O, has a component which opposes the
air streaming against the shell.

The resultant effects are then similar to those described already

21—2
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in §50 for cannon balls; this effect may be described under the name
of the “ Magnus effect.”

The effect consists in a rarefaction on the left of the shell, and
a condensation on the right. In consequence with the right-hand
rifling there is an excess of pressure from right to left, and so a
deviation ensues to the left. =

As a matter of fact the deviation which arises is to the right
and not to the left; so that this effect alone cannot explain the
actual result. Other influences must be at work to alter it.

It may be well to mention a theory, brought forward by A. Dihne, in 1884,
He assumed that this adhering air, revolving with the shell, was the main cause,
but that the resultant of the air resistance cut the axis of the shell behind the
centre of gravity. Consequently an excess of pressure existed from right to left
between the centre of gravity and base of the shell. The base is thereby driven
to the left, and the point of the shell to the right. The air resistance then acts
against the shell as against a sail set aslant, and presses the shell on the whole
to the right.

This theory sounds plausible; but it is unconvincing, seeing that the point
of application of the resultant air resistance lies actually in front of the centre
of gravity, as shown in § 52.

(b) The cushioning action.

Assume again that there is an appreciable angle between the
axis of the shell and the tangent to the path; and that the point of
the shell is above the tangent, as in the figure.

P
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b)

Assume further that the shell is rotating in a fixed position, and
that the air is streaming past it, as before.

A condensation is produced in the air on the front of the shell,
that is on the side towards the target; and on the rear side, towards
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the gun, there is a rarefaction of the air. The friction of the air in
consequence is greater on the front than on the rear of the shell;
and the effect is then as if a cushion of air PP were pressed against
the forward side of the rotating shell, as in fig. b.

A reaction is thercby set up, as can be observed often with a
billiard ball, as in fig. ¢; the shell rolls on the fixed cushion, and
actually in our case to the right.

With a right-hand rifling, and the point of the shell above the
tangent to the path, a deviation to the right arises in consequence.

(¢) The gyroscopic action.

Concerning the possibility of explaining the drift of an elongated
shell in rotation by gyroscopic action, a caleulation was undertaken
in 1839 by S. D. Poisson.

But G. Magnus was the first in 1852 to show the main pheno-
mena, by experiments on models in a laboratory.

When a top, as in the figure, is rotating about a fixed support S,
and rotates rapidly in the direction of the arrow about its axis SB,
it does not fall down, when it is set free, but on the contrary it
exhibits the well-known gyroscopic effects. If the centre of gravity
lies above the point of support, the axis of the top preserves its
position in space, even when the cup, S, in which the top is placed,
is.carried slowly round the room. On the other hand in the case
shown in the figure, when the centre of gravity is found above and
outside the point of support S, the upper end of the top (leaving
nutation out of account) describes a
horizontal circle BB,B,B;... round the
vertical SO through S.

The axis of the top describes a
right circular cone about SO as the
axis of the cone. Instead of the axis
of the cone falling down under gravity
in the plane OSB about S, and tilting
over to the ground, the axis moves
at right angles to this plane.

This motion is called precession,
or conical revolution.

This is similar to the motion of
the Earth under the attraction of the Sun.

Hegnt
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The axis of the Earth describes a complete cone in 26,000 years,
with a semi-vertical angle of 23} degrees; and the pole, or the point
where the axis of the Earth produced meets the sky, is in per-
petual motion, and describes a circle round the pole of the ecliptic
as its centre. This is the cause of the Precession of the Equinoxes.

When these ideas are applied to the rotating shell, considered
as a spinning top, and it is assumed, as before, that the centre of
gravity of the shell is at rest, and that the air streams past it with
reversed velocity, and so reacts on the shell, the following facts re-
present the conditions.

The point of support of the top is to be considered as being the
centre of gravity of the shell, supposed fixed; SO is the direction
of the motion of the centre of gravity or of the tangent to the path;
thus the air streams past the shell parallel to OS, with its centre of
gravity supposed fixed; SB is here the axis of the shell, making at
the moment an angle OSB with the tangent SO of the path. The
shell is supposed to rotate about its axis in the direction of the
arrow, that is with a right-hand twist as seen from S.

The weight W, concentrated at the centre of gravity A, is to
be replaced by the resultant air resistance W, arising from the air
streaming past; the point of application is at 4, which is between
S the centre of gravity of the shell and B the point.

The point B of the shell must consequently move at right angles
to the plane OSB, and to the right, as seen from S.

If however the point of the shell moves to the right, the air,
streaming past an elongated shell of the usual shape, presses more
against the left side of the shell than against the right. The air acts,
as explained already, against the shell, like the wind against a sail
or board, and presses the shell on the whole towards the right of the
plane of fire. Drift is thereby given to the right with right-hand
twist.

This is the explanation of the drift of a rotating elongated pro-
jectile. It can easily be shown that of the three causes in action,
(@), (b), (c), the gyroscopic effort exceeds the other two in mag-
nitude.

An elongated shell is fired at an angle of about 40° from a gun
with a rapid final twist; let us consider it when it is near the vertex
S of the trajectory, and situated so that the point of the shell is
somewhat above the tangent to the path.

The action (a) of the adhering air (Magnus effect) would
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account only for a drift to the left. But as the drift is actually
to the right, the gyroscopic effect (c) is greater than this Magnus
effect (a).

The action of (¢) is greater too than the cushioning effect (b)
(Poisson effect), the only other one which accounts for a drift to the
right. The two causes (a) and-(b) (Magnus effect and Poisson
effect) are certainly present with spherical rotating shells. But in
reality a rotating sphere, as shown in § 50, is subject to the effect
of the adhering air, and not to the cushion effect, as this last effect
alone would give the wrong direction to the drift.

The following conclusions are therefore drawn:

gyroscopic effect (¢) > effect (a) of the adhering air,
effect (@) of the adhering air > cushion effect (b),
gyroscopic effect (¢) > > cushion effect (b).

At the utmost the gyroscopic effect can only be decreased or
increased slightly by the other two effects; but the chief influence
is the gyroscopic action.

Other questions remain to be considered.

In the first place the following point may be raised: if the
comparison is to be complete, between the action of gravity in pro-
ducing precession in the top and the shell, the point should describe
a complete circle round the direction of the air resistance, and so
approximately round the tangent to the path.

Relatively to the vertical plane the point of the shell must first
move to the right and downward, then to the left, and again upward.
It might be expected that a drift would ensue alternately to the
right and left. What is the reason why the drift to the right does
not change later into a drift to the left ?

These difficulties were considered by G. Magnus, 1850, A. Paalzow,
1867, and E. Kummer, 1875.

As in the cases of the angle of departure between 0° and 50°,
right-hand drift alone arises with right-hand twist, they assumed
arbitrarily that the conical motion of the axis of the shell was so
slow that the axis had only time to move to the right and some-
what downward, before the shell struck the ground.

But this assumption does not apply universally. When the
appropriate formulae of gyroscopic motion are applied to this case,
so that the moment of air resistance replaces the moment of gravity,
and the impulse of projection of the shell replaces the gyroscopic
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impulse, the result is that the time of a complete revolution of pre-
cession is greater than the total time of flight only in the case of an
excessive twist; in fact in a well-designed gun numerous complete
turns of precession are made during the total time of flight.

Thus for example :

Time of a complete | Number of revolutions
precessional revolution per second
In the old heavy field gun:
(a) at the beginning of the
trajectory ... 0°7 sec 14
(b) at the end of the tra-
Jjectory . 03 ,, | 33
In a mortar ... 37, Py
In the infantry rifle ... 0-11,, 91

The correct solution of the difficulty is as follows.

The comparison between the motion of a rotating elongated shell
and the motion of a symmetrical top moving about a fixed support
under the influence of gravity alone, is not such that the impulsive
momentum of the top is replaced merely by the impulse received by
the shell, and the moment of gravity by that of the air resistance.

The idea of stabilising an elongated shell in flight through the
air by means of a rotation is derived from the oldest practical ap-
plication of the gyroscopic principle; among all the various technical
cases of gyroscopic motion as applied to the bicycle, monorail, gyro-
compass, etc., the movement of a shell is certainly the most compli-
cated. For while in the ordinary spinning top, the force of gravity
producing the motion of precession is constant in magnitude and
direction, in the case of the elongated shell the resistance of the air '
is variable in magnitude and in direction, and in point of application.

The consequence is that the axis of the shell does not describe a
circular cone, and the point of the shell does not move round in a
complete circle about the initial tangent or any other position of the
tangent. Neglecting nutation, the point of the shell describes in
space a cycloidal curve, and the axis of the shell a cycloidal cone,
lying on the right-hand side of the vertical plane through the
tangent.

Otherwise, considered relatively to the tangent, the point of the
shell is found always to the right of the tangent, and alternately
above and below.
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The fact that the point of the shell remains on the right-hand
side of the vertical plane through the tangent to the path, is the
reason why the right-hand drift does not change later into a drift
to the left.

And the fact that the point of the shell, after completing a
cycloidal are, always comes into coincidence with the tangent to the
path, is the reason why the shell strikes the ground with its point.

The movement of the shell about its centre of gravity will be
examined more closely in § 54, 55.

Finally the simple facts of gyroscopic theory determine in cvery
case the direction which the axis of the shell is made to assume.

The idea, introduced by F. Klein and A. Sommerfeld in their Areiseltheorie,
of the Impulse or Impulse Moment is of value.

Impulse is to be understood to mean the angular momentum of all the
separate particles of a body rotating about a fixed point.

When a top is considered with strong spin, or a rapidly rotating flywheel, or
a shell in rapid rotation, the remaining rotations may usually be neglected in
comparison with the rotation about the axis. In such cases it is permissible

with sufficient accuracy to replace the impulse of the top by the so-called im-
pulse J, that is, the product of the moment of inertia of the top about its axis
of figure and the angular velocity about this axis. This is the impulse set up in
the top by hand with the string, or by mechanical action, and in the shell by the
gas pressure in combination with the motion imparted in the bore by the
grooves.

Consider then a top S8, rotating about § as in fig. ¢, where the axis is
horizontal : C'isits moment of inertia about SB, and  is the angular velocity of the
top about 8B, so that Cr=4J represents the impulse which can be represented in
magnitude and direction by SB; the vector is drawn in the positive direction
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if the top appears to rotate clockwise. A man may be supposed to stand in
SB with his feet at §; and then he sees the rotation to the right in the direction
of the arrow.

If a definite system of coordinates is not necessary, a vector may be employed
to represent any quantity, such as a velocity, acceleration, a force, angular
velocity, a couple, and so forth, and its direction is shown by an arrow.

The corresponding quantity can be denoted by a stroke drawn over it. Thus
for example in fig. a, a point is moving with a variable velocity. Let the velocity
at the time ¢ be represented in magnitude and direction by 04 or 7, at time
t+dt by OB or v4dv. Then AB or dv is the vectorial change of velocity
(geometrical, not algebraical). Divided by d¢ this gives the acceleration in

magnitude and direction ; and mj—: is the force.

Further suppose a top has a definite position of its axis SB; and let SB=J
denote the impulse in magnitude and direction. After the time d¢ suppose the
axis to be in the -position §8;. To give this alteration of position a definite
impulse change dJ (fig. b) is required. The chief law in gyroscopic theory is
enunciated by Klein and Sommerfeld in the following convenient form, in analogy
with Newton’s Law of Acceleration: “The top moves so that the change of
velocity of the impulse vector in magnitude and direction is equal to the
moment of the external forces about the point of support.” Here dJ is the

change of the it.npulse vector, and its rate of change is @ This is to be

dt”

equated to the moment, %’: M. The extremity B of the impulse vector is

called by F. Kotter the “twist-point.” Then ‘fi_‘t] is the velocity of the twist-

point, and the law states: “The moment of the external forces is equal to the
velocity of the twist-point.”

If the impulse vector has turned through the angle dyr in the time d, the
travel of the twist-point is Jdy; and since, in absolute magnitude, J = Cr, then

ay M
dt Cr

This is the well-known formula which is of the most frequent use in practical
gyroscopic problems.

Now if the axis 8B of the top in fig. ¢ is moving in the direction of the arrow 1
about §B, and is brought into the position SB;, the rotation is about the axis SO
perpendicular to SBB,, and a rotation in the direction of arrow 3 is required;
the moment Md¢ is employed in this infinitesimal rotation dyr; the axis of this
moment is SD, parallel to BB,.

This moment arises when the top is set free, and the centre of gravity of the
top is not above the point of support S, but in 4, where SA=a. Let IV be the
weight of the top; then the moment of the weight is M= Wa. Gravity draws
the top about the horizontal line SD, perpendicular to 8B, and parallel to BB, ;
and to an observer looking from D to S, in the direction of the hands of a clock,
as in arrow 2.

Digitized by Microsoft ®



i ;

§ 53] Lateral deviations due to rotation of the shell 331

The moment of gravity must then be represented by a vector drawn from
S to D; and it generates a precession of the top from B to B, and on to D; and
the axis of the top, ignoring nutation, describes a horizontal planc.

The precessional angular velocity is then

dy Wa

de = Cr?
where € is the moment of inertin of the top about its axis of figure; r the
angular velocity of rotation about its axis; IV the weight, « the distance between
the point .S and the centre of gravity 4.

The following then is the rule for finding the direction of motion of the axis
of the top, when the axis is set free: the initial impulse J of the top is to be
drawn in the correct direction from the point of support S along the axis SB,as a
vector; and is positive to the side where the direction of rotation is with the
hands of the clock. The same is done for the moment Jf of the external forces,
producing the precession.

Then imagine a small additional vector dJ= Mdt, drawn through the end, B,
of the impulse vector J, and parallel to the vector of the turning moment A/,
The line joining the centre of rotation § with the end B, of the additional
vector gives the position of the axis of the top at the time t+d,

This rule is to be applied in the following treatment of the problem.

Let the plane of the paper be taken as the plane of fire. The
shell is flying from right to left, or the centre of gravity S of the
shell may be supposed at rest, while the air is streaming from left to
right against the shell, which is rotating about its long axis with
angular velocity . The resultant air resistance is denoted by W.
The point of intersection of the resultant with the axis is at 4,
near the point of the shell.

In consequence of the stability of the shell owing to the rotation,
the axis makes an angle a with the tangent to the path, but the axis
is still situated in the plane of fire.

The actual impulse J = Cr is represented by the vector SB drawn
from 8, the centre of gravity, along the axis. With right-handed
rifling this vector is to be drawn backward, because the shell seen
from behind is turning like the hands of a clock.

The moment of the air resistance is tending to turn the shell
about a horizontal axis SD drawn through S, the centre of gravity,
and in the figure this axis is drawn forwards perpendicular to the
plane of the paper; because, as seen from D, the air resistance tends
to turn the shell in the clockwise direction.

A vector BB, must then be supposed to be drawn through B,
the end point of the impulse vector, parallel to and in the same
direction as the moment-vector M or SD, and of magnitude Mdt;
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and then SB, is the new position of the impulse vector and con-

sequently of the axis of the shell after the time df. The base of

the shell moves forward in consequence, and the point of the shell is

to the further side of the plane of the figure; or seen from the gun
the point of the shell goes towards the right of the plane of fire.

Air Resistance

w

The shell starts in consequence a motion of precession with the
angular velocity —é% , Or —vg—: , In the direction of the twist.

This causes, as stated already, a motion of the shell towards the
right. .

The further course of the motion of the shell about the centre of
gravity S will be described in § 54.

§54. The movements of precession and nutation of an elongated
shell in rotation. Rectilinear motion of the centre of gravity.

The explanation of the gyroscopic movements of a rotating
elongated projectile will begin with a simple case, where the analogy
with the theory of the common spinning top under gravity is most
evident. '

A. Shell fired vertically upward or downward without
lateral impulse.

The shell is of the shape of an elongated figure of revolution, with
an initial angular velocity » about the axis, and fired vertically
upward, so that the centre of gravity as a first approximation moves
in a vertical line. At the start suppose the long axis to make
an angle «, with the vertical.
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The shell is supposed to have received no impulse perpendicular
to its long axis. Further, let the following assumptions be made:
the shell is so shaped that the resultant
air resistance W on the shell acts approxi-
mately in the dircction of motion of the PE
centre of gravity, and is therefore vertical; =
and its point of intersection with the axis is
at a constant distance from the centre of o
gravity S (Assumption 1). S

Further, suppose the motion of the centre =
of gravity of the shell to be divided into
separate parts; and in the part considered
for the moment, suppose the air resistance, which actually varies
with the angle v between the long axis and the vertical and with the
velocity of the centre of gravity, to be taken as constant, and as
known in magnitude (Assumption 2).

The angular velocity r of the shell is then also constant.

Finally, the motion of the shell about its centre of gravity, moving
upward with velocity », may be taken to be the same, as if the
centre of gravity were fixed in space, and as if the air were flowing
past it downward with veloecity v (Assumption 3).

After these preliminaries the analogy is complete with the
spinning top which has its point placetl in a fixed cup S, and its centre
of gravity situated at a distance a from &, in the case where the top
is under the same initial conditions and set free without shock, and
friction is supposed to be absent.

The results arrived at by calculation
are given here without proof: <

Suppose a sphere is described about S
the centre of gravity of the shell with
radius SP, where P is the point of the
shell; and let the vertical through S cut
the sphere in 0. The movement of SP,
the axis of the shell, is represented in a
simple manner by following the motion of
the point P over the surface of this sphere. g

The point P of the shell describes a N Centre of Gravity
double motion. Suppased frxed

In the first place the inclination & of
the axis of the shell to the vertical varies periodically between its

' 0

Flived poinl o suppor?
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smallest value v, (arc OF;) and its greatest value v, (arc OP,); or
the point of the shell fluctuates continually between two circles,
P,P,P,... on one side, and P, P, P;... on the other, which are
described on the surface of the sphere with centre O and radial arcs
90 and «,. This motion is called nutation.

Secondly, the arc P revolves about O, varying periodically, and
assumes in series the positions OF,, OP,, OP,, .... This motion
is called precession.

As to nutation, the instantaneous angle of inclination ¢ or OSP
between the axis of the shell and the vertical, or the arc OP on
the surface of the sphere, is given at any time by

d 2Wa Cu2
Zl% = /\/ [(cos Yo — COS 7y) {T ~ Absiniy (cos oy — cos ry)}:l . (1)

Here C denotes the moment of inertia of the shell about its long
axis SP, A the moment about any axis through S perpendicular
to the long axis; A is consequently supposed to be greater than C,
as is actually the case with an elongated shell.

Then 4, = 0P, =0P,; = ... and

Cre
cosy; =o + +/(a?+ 1 — 20 cos ), = oA (2)

As o increases, so the outer limiting circle lies nearer to the
inner circle, determined by thé initial conditions of the shell; and

the difference between vy, and v, is smaller and also the arcs of nutation
P,P, P, P,P,P,, ...; on this account o is called the Stability
Factor. :
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The axis of the shell will sometimes sink down to the horizontal
plane through S, and will then be square to the vertical path, if
1= 4w This occurs when ¢ =4 secy,.

When the nutational oscillations are very small so that the
higher powers of v, — ¢, may be neglected, the amplitude ¢ of the
nutation is approximately

1 . 2WaA sin
e=gosinyp==""/, Y e, @3y
The time of a complete arc PP, Py, or P, P, P,, ... is then
27 A
T = Tt e )

The plane through SP, the axis of the shell, and the vertical SO
then revolves about SO with the angular velocity

dy _ Cr (eos y,—cos 7)

dt A sin?ry
The angular velocity is thus sometimes zero, that is when the
point of the shell arrives at Py, P,, Py, ... on the inner limiting circle,
of radius «,; on the other hand, it is & maximum at the points

P, Py, Py, ....
The average angular velocity of precession is
Wa -
= W 4 edeiisessrasscmssctanetnansens (O)

This increases as the moment Wa of the air resistance increases,
and the impulse Cr about the long axis decreases. The time T' in
which the point of the shell describes a complete circle about O is
then

27w Cr
T= —-”q ¢ escevsecsrsensicee tetevstesann (6)

If the shell is spinning with right-hand twist (» positive), that is,
so that an observer, looking from S, the centre of gravity of the shell,
towards the point, sees it rotating clockwise, and if the air resistance
cuts the axis in front of the centre of gravity, the precession takes
place in the same direction as the rotation of the shell about its long
axis.

In this case, when the point of the shell with right-hand twist
is inclined to the left of the plane of the figure at the beginning
of the motion, and when the air resistance acts in front of the centre
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of gravity, the point of the shell moves from the left forwards, and
then to the right backwards, and the inclination of the axis to the
vertical alters periodically at the same time.

The air resistance acts on the shell as against a sail set aslant,
and the shell moves alternately to the right, backwards, left, and
downwards.

The assumption that the centre of gravity of the shell is moving
in the vertical is then to be considered only as a first approximation.
In a second approximation the centre of gravity describes a certain
helix about the vertical, through the starting-point.

Ezample. Let the initial velocity of the centre of gravity of the shell in a
vertical direction be vy=442 m/sec; the final angle of twist A=3°36’, the half
calibre R=0044m, and so the angular velocity of rotation of the shell about the
long axis (§ 100)

. ) tan A _a42 tan 3° 36’
R to00a

Let the moment of inertia about the long axis be ¢'=000065 kg-m-sec?,
and then Cr=041; the moment of inertia about a cross axis through the centre
of gravity 4=42C, a=0081 m, Wa=3"7m-kg; then the stability factor o=4'1,
the time of a circuit of precession ' '

2w Cr

T=W=0'7 8ec;

=632 rad/sec.

that is 14 revolution/second.
The time of a nutational oscillation is on the above assumptions

rd 42 sec;
Cr 100’
corresponding to 24 oscillations per second.

Ty=

B. Shooting vertically wpward or downward, with initial
lateral impulse.

As in case A; but at the beginning of the motion an impulse is
given to the axis of the shell.
dy dyr . . .
At t=0let 3¢ = e and - = W that 1is, at the start, we give
the axis an angular velocity w, about a horizontal axis through &,
as though the point P of the shell received a blow outwards in the
direction of the radial arc OP perpendicular to the boundary circle
P,P,P,...; and in addition let the axis of the shell receive an
angular velocity w; about the vertical SO, whereby P is driven in

the direction of the tangent to that circle.
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In this case the angle of inclination 4 between the axis of the
shell and the vertical is given as a function of ¢ by the equation

A*sindy ((jlt) = A sin*y [2 Wa (cosry, — cos y) + Aw? + A 81nZ oy wy*]

—[4 sin?ryy. wy + Cr (cos 7, — oS PP vevvnnnnnen 1)

This equation can be integrated in particular cases by means of
the Integraph, when cosry is introduced as the new variable. Then
+ is given at time ¢ by

A sin’y %\—f = A sin®y,, w; + Or (Cos y, — COS ). vennenn. (2)
The greatest and least values of 4 are obtained from (1) by putting
@ =0
Writing COSy =1, COSY,=1Uy, Si7y,=1,,
A1 —u?) [2M (up—u) + Awd + Auvlws)

—[4utw, + Cr ('uo - u)]2 ............ 3)

where Wa is put = M. TThis is a cubic equation for u, and the solution
gives the least and greatest angle OSP =ry; since two roots of » or
cos lie between — 1 and + 1, this gives real angles.

The equation may be written

u? — 1 (U + 0 U’ + 4 ) + u (= 14 245, + 1,0,°)

= U + LUt T U U — Ty — U — Uy, aaenns 4)
. Aw? . Aw? . Cxrr . Cru
where W=3gr0 BT g 1.3=20=m’ =31 -

In the special case, where a tangential impulse alone takes pla.ce
and so w,=0, then u,—u is a factor of (38) or (4), and y=1ry, is one
solution.

The nutational arc in this case touches the precession circle of
radial arc #,, as in the figure. Then (4) reduces to

w2 —u (i3 + hu,?) : ;
=1 = g — 1,00° + TU w2 ... {5) ».\
and the root u=cosey, lying between —1 and
+ 1, gives the other boundary circle of the
nutation arcs.

It is assumed that the impulse w; is so arranged and the quantities

A, W, a, C, r are so chosen that 7,u,* can be neglected in comparison

C. 22
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with 75, and ¢, u,%?* in comparison with 1; and then the small nuta-
tions may be replaced by the approximate values given by Klein and
Sommerfeld : #? is replaced by its initial value »2? and then, since
wd=1—ug? ‘ :
— Uty = uy® — U2 — Ty,
“0_“'=Sin%(2_M_A-g:ﬂ"_t\

Uy C? Cr /-

Denoting the greatest amplitude of the nutation are by €, and
putting y=r,+ ¢ and expanding for small values of ¢, then since
u =1, T u;¢; the amplitude

or

. 2MA 24w
€=~ siney, (—W——E—l) ..... oerea(6)
_ A nutation will then be completed in the time l
Ty=n~2mA + (O —4AM + A*wpu?), ...........(T)
and when v, and w, are not too large, this can be replaced by

Th=27d + (O —4AM). ccoveenrienin, (8)

C. Contrnuation.

A more important case is where the axis of the shell starts

vertically, with the.initial direction SO coincident with that of the .

motion of the centre of gravity; but where in addition a lateral
impulse has acted on the axis of the shell.

In this case y,=0; the axis of the shell receives the impulse Ary,’,

and has an angular velocity v,” about an axis through the centre of

- gravity, perpendicular to the axis of

the shell, in consequence of the vibra-

the escaping gases. The point of the
shell then describes loops.

The figure is drawn so that the
motion of the point of the shell is seen
from above.

The loops pass always in succession
through the prolongation of the initial
tangent, or if no error of departure or
jump is present, through the pro-
longation of-the axis of the bore, so that the axis-of the shell is

—~in
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always brought back to the vertical path of the centre of gravity by
retracing a loop.

The maximum deviation between the axis of the shell and the
vertical is given by

Ay = tan* L [C*? — 24 M (1 + cosy)]. ... (1)
At any given time ¢, when the angle of deviation is small and the

stability is great, that is when —can be neglected in comparison with 1,

V(C*r*—44 M) Cr 2M .
v =rsin 54 =~y sin (A C’r)t (2)
and a single loop will be described in the time
27 )
Ty= gy eeeereeeeonee s i (3)
4 Cr

and this is independent of the relative magnitude of the initial impulse.
The axis of the shell revolves thus about the vertical through
the centre of gravity in the direction of the rotational velocity 7,
received from the rifling, and with the a.verage angular velocity
dy _Cr
dt SOAC reeeeeeeeseesesnnens )]

Remark. If the axis of the shell at the end of the trajectory lies very nearly
in the tangent of the path, and the shell strikes a target, it will receive a blow at
its front end.

If this blow is given from below and upwards, with right-hand twist, the point
of the shell swerves upwards and then to the right; if the blow is from left to
right, the point of the shell swerves to the right and down; if the shell is struck
at the front end from above downwards, the point swerves downwards and to the
left: finally if the blow is from right to left, the point swerves to the left and
upwards.

At the impact of the shell on the ground, the blow in most cases will be given
from below and upwards, and so the shell swerves to the right.

If the shell penetrates into a bank of earth, the powerful nutation will in
some cases cause a complete reversal of the path of the shell.

D. Rectilinear motion of the centre of gravity, with inaccurate
distribution of the mass of the shell.

This case will arise in the immediate neighbourhood of the
muzzle of the gun.
While the shell is moving up the bore of the gun, the pressure of

22—2
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the gases preponderates, and thereby the shell undergoes an ac-
celeration right up to the muzzle, and even for a short distance
beyond.

A point must then exist where the shell undergoes neither an
acceleration in the direction of the prolongation of the axis of the
bore, nor a retardation; and where it can be assumed approximately
that no external force acts on the shell, leaving gravity out of account,
as that does not affect the motion of the shell about the centre of
gravity.

The corresponding motion of the axis of the shell can be con-
sidered in different ways. Concerning this, two modes- of repre-
sentation, due to Poinsot, may be mentioned which may be applied
to the shell.

The motion of the shell is defined through its momental ellipsoid.

1 1
JO dA’
where C denotes the moment of inertia of the shell about its long
axis, and 4 is that about a cross axis through the centre of gravity,
and it is assumed that 4 > C.

If the shell is symmetrlcal the C axis of the momental elhps01d
coincides with the axis of the shell.

But in the case where the distribution of mass is not symmetrical
in relation to the axis of figure, these two axes make an angle with
each other.

At the instant when the shell is free after leaving the muazzle,
suppose SB to be the direction of the
instantaneous axis of rotation, and  to
be the magnitude of the resultant an-
gular velocity.

In the case where the mass of the shell
is distributed symmetrically about the
axis of figure, and the principal axis C lies
also in the direction SC, the resultant.
angular velocity o is the resultant of 7,
the angular velocity acquired round the
principal axis SC from the rifling, and of
s, the angular velocity of the shell, due
to some impulse of the gases or the vibra-
tion of the muzzle, about an axis through
S perpendicular to SC, and to the plane

Let this be a prolate ellipsoid of revolution, with semi-axes —
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of the paper; and thus w =+/(r*+5?. The angle BSC or a is thus
given by -

r 8
cosa=—,0r tana=-.
@ r

But on the other hand if the axis of the figure does not coincide
with the principal axis SC, but is denoted by the line SB in the
beginning of the motion, and if the shell is free from shock, then the
resultant angular velocity w arises from the fact that the shell in the
passage up the bore is forced to move with the axis of figure along the
axis of the bore, and in this constrained motion through the grooves an
angular velocity o is given about the axis of figure SB.

The shell is next supposed fixed at the centre of gravity S, with a
circular cone BSB;, fixed in it as in the figure, movable about its
apex S, with semi-vertical angle a (the polhode cone), and axis SC.
At the same time another cone BSB, is taken, fixed in space,
the herpolhode cone, and with semi-vertical
angle B, given by

tana= %tan (a+B).

The cones touch along the generating line SB.
. The subsequent motion of the shell about the centre of gravity S
is produced by rolling the cone BSB,, fixed in the shell, on the cone
BSB, fixed in space, with constant angular velocity

dy Cr

dt ~ Acos(a+B)

This is the angular velocity with which the plane 4 BCS revolves

about the axis SA4 of the fixed cone; and in the same direction as r,
when 4 > C.

The line of contact SB of the two cones ' /
is then the instantaneous axis of rotation. E A2
The angles a and B remain constant, and s

also the angle ASC; the resultant angular
velocity e is also constant.
Suppose for example 4, C, a known;
" then 8 can be found from the above: and if
» is known as well, either directly, or indirectly from the equation

1 = s cot o, then %\—f is also known.

The procedure can start also from the momental ellipsoid, shown

Digitized by Microsoft ®



342 Lateral deviations due to rotation of the shell  [cH. X

in 'the figure; the initial position of SB the instantaneous axis,
meeting the ellipsoid in B, is also supposed to be known.

The tangent plane of the ellipsoid is drawn at B, and cuts the
vertical through S in 4.

Suppose the ellipsoid rolls on the fixed plane E, the line SB to
the point of contact gives at any moment the instantaneous axis SB;
and so forth.

First example. Suppose in consequence of the irregular distribution of the
mass that the axis of figure of the shell does not coincide exactly with the
principal axis of the momental ellipsoid, which is an ellipsoid of rotation, with
three principal moments €}, 4, 4; 4 >C'; and suppose the axis of figure SB to
make an angle of 1° with SC, the principal axis of the momental ellipsoid.

Agsume a muzzle velocity as in the former exanmiple of #,=442 m/sec, a final
angle of twist 3° 36, half-calibre 0044 m, moment of inertia ¢'=0-00065 (kg-m-
sec?), and 4=4-2C,

In the passage of the shell up the bore, the axis of figure SB is the axis of
rotation, in consequence of the constraint of the grooves; and
suppose the shell is leaving the muzzle; and that it has not
received a transverse angular velocity through an impulse.

Then SB is the direction of prolongation of the axis of the
bore, which is supposed to be at rest.

At the moment of release the principal axis SC of the mo-
mental ellipsoid may be supposed to have the forward end
directed towards the right; and then we determine the sub-
sequent motion of the shell, on the assumption that no ex-
ternal force is acting.

The angle BSC=a=1°; and the angular velocity about SB
is on the previous assumption equal to

v

_%tana  442xtan3 36
TR T 0044

® =632 radians/sec;

tan (a+ﬂ)=% tana=4-2tan1°, a+B=ASC=4"10,

. I dyr COr C1R1.
The angular velocity » about SC is wcosa=~632; SF = Aoos(ath) =151;

* 5
and the number of revolutions per second = % =24

The moving cone BSB; with the semi-vertical angle 1° then rolls on the fixed
cone BSB,, of which the axis is directed to the left-hand side of the axis of the
bore. . : :
The axis of figure SB is not the instantaneous axis, but the point B of the
shell describes. an epicycloid, lying on the circle BB,.

"' The point B at first describes an arc towards the right, and then moves to
the left. The angle between the axis §4, fixed in space, and the axis of figure
will fluctuate between 3°10’ and 5° 10,

tivs The instantaneous axis describes a cone about SA with the semi-vertical

Digitized by Microsoft ®



§ 55] Lateral deviations due to rotation of the shell 343

angle 3° 10, and the principal axis SC describes a circular cone about the same
axis, of semi-vertical angle 4° 10, The rolling cone fixed in the shell, rolls 24
times a second round the cone fixed in space.

Rapid vibrations of this sort often take place in rotating shafts and fly-
wheels, when they arc not centred exactly; according to the above they are
present in shells, when the mass is not properly distributed.

Second example. Suppose the shell has the proper distribution of mass, so
that the axis of figure coincides with the principal axis SC,

At the start of the free motion, let SC be the direction of the prolongation
of the stationary axis of the bore, as well as the axis of figure and the principal
axis; but suppose the shell to receive at this instant an angular velocity about
an axis through the centre of gravity perpendicular to the axis of the shell. We
desire to determine the magnitude and direction of the blow, so that the motion
of the principal axis SC may be the same as in the former example.

The axis of figure or the principal axis describes in this case a circular cone
round S4 of semi-vertical angle 4SC=y=4°10"in ;sec; and if this is the case,
tho angle between the instantaneous axis S8 and SC must be an angle BSC=1"
at the beginning of the motion.

The velocity of the impulse

B
s=rtan 1°= o632 tan 1°=11 radians/sec;
and this must be the angular velocity of the impulse G
about a line §8; perpendicular to the axis of the shell @ |y
through § the centre of gravity, and under the assump- ©

tion of right-hand twist the impulse must act towards
the further side of the drawing. Such an angular velo-
city might originate in the vibration of the muzzle
upwards,

Sp——C & b4

§ 55. Motion of Precession and Nutation of an elongated rotating
shell. Curvilinear motion of the centre of gravity.

It has been assumed in the preceding that the motion of the
centre of gravity is rectilinear, as in vertical fire, and approximately
for a very short path in curved fire; the usual trajectory may now be
considered with a curved path of the centre of gravity.

It is well known that the motion of the shell can be resolved into
the motion of translation of the centre of gravity, which proceeds as
if all the external forces acted through it, and into a rotation of the
shell about the centre of gravity, as if it were a point fixed in space.

The two motions are dependent, and it is impossible to solve this
complicated problem with strict accuracy.

This relative dependence is at once evident: the greater the
angle between the axis of the shell and the tangent to the path, the
greater the air resistance against the shell; so that the greater the
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resistance offered by the longer side, the more the trajectory of the
centre of gravity is altered. On the other hand, the greater the
curvature of the trajectory, the more the angle alters between the
tangent to the path at any point and the direction of the initial
tangent; therefore the greater must be the amplitude of the gyratory
motions of the axis of the shell.

This mutual dependence of the two movements neces51tates a
procedure of approximation.

The method to be employed consists in an approx1mate solution
of the equations of translation, without consideration of the motion of
rotation, and then the corresponding results are employed in the
equations of the motion of rotation, which are then integrated.

The integrals, so obtained, are again employed in the calculation
of the deviations of the shell in consequence of these rotations; and
we examine the equations of translation with a view to taking into
account the definite terms of correction.

This is a procedure employed in a similar manner in Astronomy,
in the calculation of perturbations.

In an analytical solution, two systems of coordinates are employed
for this purpose: one fixed in space, with an origin at the centre of
the muzzle of the gun, and another movable in space, but fixed in the
shell, with origin at the centre of gravity.

The differential equations of the motion of translation of the centre
of gravity are then obtained, and also Euler’s differential equations of
the rotation of the shell about the centre of gravity, under the forces
acting in the preceding cases; and then an integration of the differential
equations is attempted.

For a purely analytical solution of the problem of the oscillatory
motion of the shell, investigations have been made, in particular by
St Robert, N. Sabudski, M. de Sparre, and P. Charbonnier.

The authoi too has given an analytical solution under certain
limiting assumptions in the Zeitschrift fiir Mathematik und Physik,
43,1898, pp. 133 and 169, as also in the first edition of this volume;
the assumptions are explained in the first edition. The problem as
stated by N. Sabudski and M. de Sparre is considered there more
carefully in detail.

The latter employs the principle, first used by F. Klein in gyro-
scopic work, of the introduction of the complex variable into the
two “differential equations, and, after integration, of the separation
into the real and imaginary parts.
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But N. Sabudski made it clear that these analytical solutions do
not supply a complete solution of the problem, even when the
gyroscopic motion outweighs by far the action of the adhering air,
and the cushioning action, as it was shown in § 53 that it is per.
missible to assume. The following uncertainties arise in the quanti-
ties of the differential equations: the components W, and W, of the
air resistance W, parallel and perpendicular to the axis of the shell;
the distance, a, between centre of gravity and point of application
of air resistance on the axis of the shell; the angular velocity  of
the shell about its long axis. According to § 12, calculations can be
made of W, and W, for any angle a between the axis of the shell and
the tangent to the path, but the critical remarks at the close of § 12
have shown that these calculations are very uncertain.

The angular velocity of rotation of the shell is not really constant,
because friction between the air and the shell acts not only along the
surface of the cylindrical surface, but also at right angles (compare
Vol. 111. § 184, pp. 286—288); and accurate knowledge of the decrease
of r is very uncertain.

But an analytical treatment of the problem cannot well be under-
taken with advantage, until experimental work has satisfactorily
determined the values of some of these unknown quantities.

The need of such a systematic experimental treatment has been
pointed out rightly by A. Dihne; and in any case such a research
can only be carried out with great trouble and expense.

On these grounds the analytical treatment is omitted, and only
the graphical method of approximation is employed, which was
given by the author in the article in the Zeitschrift f. Math. w..Phys.

Graphical approan'mate solution by the author, 1898.

Leaving the rotation of the shell out of account at first, a calcula-
tion is made in the usual manner, of § 5 and 8, of the successive
angles of inclination 6 of the trajectory, from the beginning of the
motion up to the impact of the shell on the ground, for a series of

~successive small intervals of time At; as also of the corresponding
velocities of the centre of gravity of the shell, and thence of the air
" resistance W (v).

Next let us follow the centre of gravity S of the shell: or, fix
& and let the air stream past the shell.

Describe a sphere about S with radius 1 m, and draw lines through
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S parallel to the various directions of the tangent, corresponding to-
the separate time intervals At.

The intersection of these lines with the sphere may be called the
tangent points, and denoted, as in fig. a, by '

0) Tlr T?) Ts; TA: ..

The intersections of the axis of the shell with the sphere are
called the shell points, and denoted
by

) 0,0, 0, 0, ....
Axis of shell above the
tangent. The inside surface of this sphere
may serve as the plane of the dia-
gram in the following drawing:

Axis of shell below the  the sphere 1s supposed to be looked

tangent. .
at from S; and the construction
may be carried out approxi-
mately as if it were a flat sheet.

Axis of ts;:]eéé:sove the of paper. )

The method depends on
the preliminary assumption, that
for a small time-interval At the
precession of the shell about its.
centre of gravity S is independent.
of the motion of Sin the trajectory,
and that the two motions, which actually take place together, may
be treated as if one followed the other.

At the beginning of the motion the tangent point is at O; and
after the time A¢ it has shifted to T), after 24t to 7%, and so
on. These points are assumed to be known from a preliminary calcu-
lation that has been carried out; for the slope of SO is ¢, of ST} is
6 after the time At, and so on.. The points O, 1, T%. ... thus lie very
nearly in the plane of fire, and if a flat sheet of paper is em-
ployed for the drawing, they lie approximately in a vertical straight
line, though strictly speaking the points 7y, 15, T}, ... lie a little to
the right of the vertical through O; but this is not shown in the
drawing. -

The shell point is also initially at O, since the shell is projected
from the bore direct without constraint ; and the initial imnpulse ex-
perienced by the shell from the escaping gases does not produce
deviations that need be considered. ' ‘

Axis in the tangent.

Axis in the tangent.

Fig. a.
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After the lapse of the time A¢, and after the tangent has turned
from SO into the position ST, there is an angle OST, between the
axis of the shell SO, and the tangent to the path ST}, because the
axis remains parallel to itself in consequence of the stability imparted
by the rifling. Precession now takes place; the axis of the shell
describes in the time At a small part SO0, of a circular cone about
the tangent S7}, that is, the point of the shell deseribes round 7,
a circular arc 00, with radius 7,0 = 7\0,, because the precessional
motion must take place round the direction of the resultant air re-
sistance, and this is approximately parallel to the tangent ST of the

trajectory.

Then the angle 07,0, = A+ is given by AA—\i’=—l(’,L:', in accord-
ance with the fundamental equation of gyroscopic theory. W (kg) is
the air resistance on the shell, a (m) the distance between centre of
gravity S and point of application of the air resistance on the axis,
assumed somewhere near the point of the shell, ¢ the moment of

inertia of the shell about its axis of length, r= 2;1)0 the angular

velocity, D (m) the length of the pitch of rifling; or . t;t{n 8,

& the final angle of twist, 2R (m) the calibre.

After a further element of time At, the tangent point has reached
T,. The angle between the axis of the shell SO, and the tangent of
the path ST, has now become 0,87,; and we therefore describe a
circular arc 0,0, about T, with radius 7,0,, of which the central angle
is given as before; and the further construction proceeds as in
figure (a). \

It is seen then that in a well-designed construction of the gun
and shell, the axis of the shell continually moves round the direction
of the tangent, or at least moves in its neighbourhood, as for instance
at Ty; further, that the point of the shell lies alternately higher and
lower than the tangent; and finally, that the point of the shell keeps
to the right of the tangent.

" This construction thus explains in the simplest manner not only
the arrow-like flight of a well-constructed shell, but also the observed
fact that with right-hand twist, a drift ensues to the right; that is
as long as the angle of departure does not increase beyond a certain
amount. S

The cycloidal curve 00,0,... of the point of ‘the shell is the
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precession curve: it is analogous to the precession circle described
by the head of a top, acted on only by the force of gravity.

As is evident in the course of the construction of the figure, the
change of the circle into the cycloid has its origin in the fact
that the centre of the precession circle is not at rest on the line
01\T,7,..., but is moving: and moreover, the direction of the air
resistance, producing the precession, is always altering.

The curve 00,0;... can also be considered as generated by the
motion of a circle, of variable radius. The centre of the circle moves

from O with the velocity %lﬁt) along the straight line 0T, 7, ..., 8 de-

noting the instantaneous horizontal slope of the tangent.
At the same time the circle is turning with the angular velocity

oi;i’, the describing point on the circumference starting initially
from O.

The construction can be carried out under various assumptions,

and examined as follows. If the precession 0%’ proceeds at a rela-

0 tively rapid rate, the cycloidal ares are

r ‘ numerous, and so long as the nutation,

' which is to be considered later, is small,

4 the heights of the cycloidal arcs, and

T thence the average movement of the point

to the right, are also small.

» Frequently the axis of the shell ap-
&::54 proaches very close to the tangent of the
S VA path; in such cases the flight of the shell

is very similar to that of a well-con-
structed arrow, and the drift remains
small. ‘

On the other hand, when the precession
is relatively very slow, as in fig. b, the case
can arise where the points 0, 0, 0; ...come
close together in comparison with the
points 0, Ty, T4, T;; consequently the point of the shell no longer keeps
close to the tangent.

To an observer, looking at the trajectory from the side, as in
figure (D), the axis of the shell must appear to remain parallel to
itself. The shell comes to the ground with the base forwards; the
drift is great, and may in some cases change in sign. '

Fig. b.
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§55] Luteral deviations due to rotation of the shell 349

Whether the one casc happens or the other, depends on the
closcness of the series of points O, 1y, T,, Ty, ... in comparison with the
series 0, 0y, 0,, 04, ..., with equal time intervals A¢, and so on the ratio

dé  dy .
fdt T But in § 17,
df _ gcosb
di - v .’
L dy _Wa
and moreover, yralrymt
so that the ratio becomes
f= Crgcosé
T Wav

Thus in the case of a high angle trajectory when the shell is
near the vertex (where cos @ is large and v is small), and in addition
the lengt;h of the shell is moderate and the angle of rifling large

(a, small; large) then f has proportionally a large value, and

figure (D) replesents the case.

Theoretically f can be infinite, if the angle between the axis of
the shell and the tangent grows greater, and reaches 90°. Here «
is zero, and the precession ceases; the axis of the shell remains
parallel to itself, and the shell flies with the base forward on the
descending branch, like a shell with a flat head, and with reversed
rotation.

In such a case the flight of the shell would be improved, either by
a diminution of the angle of rifling, or by an increase of the initial
velocity ; or by an addition to the length of the shell; or finally,
by placing the centre of gravity more towards the base, to make e
greater and f smaller.

So far nutation has not been considered; but this is always
present, as mentioned in § 54. Nutation is either independent of
impulse or due to such shock; in the last case, a lateral initial blow
acts on the shell, which does not pass through the centre of gravity.

Tt appears that in the passage of the shell from the muzzle a
lateral impulse nearly always acts, greater or smaller, due to the
escaping gases.

The effect of the impulse depends on the gas-pressure at the
muzzle, the nature of the powder, the shape of the base of the shell,
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350 Lateral deviations due to rotation of the shell  [cH.X

and finally on the stability factor; also on the angle of rifling, the
initial velocity, the two principal moments of inertia, and the position
of the centre of gravity.

.The nutations are probably damped later by the action of the
air immediately behind the shell. '

Figure (c) shows the progress of these nuta-
tions, -Just as in the ordinary top under
gravity, the precession circle forms the centre
of the nutation arcs of the head of the top;
so in the same way, the precession cycloid
forms the centre of the nutations of the point
of the shell. '

The direction of rotation of the nutation
arcs is the same as that of the curve of

-rifling ; that is, with the right-hand twist, it
is from above to the right; then down, and to
Fig. c. the left.

It is possible for the precessional arcs to be small while the arcs
of nutation are large ; and then it is as if the point of the shell were
describing a circle about the instantaneous tangent. The nutation
is then visible to the eye, provided the velocity of the shell is small;
and as the air is set into violent motion by these oscillations of !
nutation, the sound of these oscillations is frequently heard in periodical |
vibrations in the air, and the range is thereby diminished.

The expressions in the formulae of § 54 for the nutation, the
stability factor, the periodic time of a nutation, and so forth, will hold
approximately in the case of a curved trajectory.

-

§56. Calculation of the lateral deviation or drift of an
elongated projectile in rotation.

1. Empirical formula.

The observations made in France on the final deviation Z of the
shell at its point of descent on the muzzle horizon, have been em-
ployed by Hélie in the following formula, which is of a purely
empirical naure ;.

Z =Av?SIN® P, ceuiniininninnnnn... PO €8}
4 =551 (211;)') tan Asine, coooviveninnain, 2
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Here A denotes a constant for a given gun-system, called the
deviation value, given by (2); the notation is as before, with A the
fixed angle of twist, and y the semi-angle of the cone at the point of
the shell.

W. Heydenreich gives, for example, the following numerical values
to A; for a turret howitzer firing 21 ecm shrapnel, 4 =0-0166, the
shell being comparatively short for a considerable twist of the bore;
for a heavy field gun, 4 = 00030, with slight twist for a comparatively
great length of shell.

This Hélie formula, although very frequently employed, must not
be considered as holding universally, but it may be employed for
angles of departure up to 50°. Shooting vertically upward, ¢ =907,
and (1) would give a maximum deviation Z, whereas theoretically it
should be zero.

E. Bravetta proposes for high initial velocity v, to take the
factor A as a linear function of the range,

Z=(A,4+ A3 X)v3sIn* P, .cvereerneerniinnns 3)
and 4,, A, are to be determined from different values of Z, observed
at different ranges.

2. Theoretical calculation of the lateral deviation, or drift, by
approzimation.
It has been pointed out already in § 55, that for a measure of the
drift, the ratio % : 0%’ may be taken; and that
_geosd.Cr
f= v.Wa °

with the notation explained before.

"This expression for f denotes the average angle between the axis
of the shell and the vertical plane through the tan-
gent, along the arc of a cycloid. 0 A

This can be proved as follows: the tangent point, as it
was called, starts a movement of precession at the point 0,
as in the figure. The point then retires backward, and
reaches 7 in the time . Ceda

The point of the shell also was situated at O at the start,
and will be found after the time ¢ at some point 4. 4

The centre of gravity §'is supposed to be above the
plane of the disgram, with S7° the tangent of the path, and
84 the axis of the shell.

The angle between the vertical plane SOT, and the impulse plane SA T (plane

vedy
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throughe the tangent of the path S7"and axis of shell SA) is taken to be ¥ after
time ¢; and the angle 487 is denoted by a.

If the tangent to the path maintained its deviation in space, and the resistance
of the air to the shell were constant in direction and magnitude, the axis,of the
shell must describe a complete cone about the tangent to the path, or more
accurately about a line through S parallel to the direction of the air resistance;
and 7’4 must revolve about the fixed point T, with the mean angular velocity

ay _ Wa
dr Cr ;

and the alteration B\j; in time 8 is given by
' , = 671'7 dt

Actually at the same time the end 7' of the tangent moves downward in
the time df to 77, and the angle of slope 4 diminishes by dé, so that in the figure
TT= -dé.

If it is assumed again that in the small time element d¢ the two movements
are independent of each other, the point of the shell for the same position of 7"
moves first from A to B, and then 7 moves down to 77,

The angle 77, B between the plane of impulse and the vertical plane through
the tangent of the path is thereby changed into Y +dy in the time dz: and at
the same time the angle between -tangent and axis of the shell has become
Ty\B=a+da.

Applying the law of sines to the triangle 757, we have

a+da — sin (Y + 8y) (@)
" Sy rdy)’ T RTTCTPIPRIS

or dyr==8y— ta.n\]f———"—adt tau\[/%. .................. ()

Further, if the vertical is drawn from 7 on 7)B, da= —cos ¢ db, and since
in §17,

When the approximation is made of assuming that the
ratio f of the two angular velocities may be taken as having a
constant mean value along a cycloidal arc, the equation (d)
may be integrated as a linear differential equation with a perturbation term ;
and then ‘

as
g 0 do= — gcos 8 dt,
S v 3 '
8 3 he d cos() dt.
2 .—-Qf 0, 2 we have a= gcosqf—— ..................... (@
B "% Elimination of d between (b) and (c) gives, when tana is
2 0 ¥ written in place of q,
5 &, d _Wa ' vda _tanyrda
’§ L 2F40; S V=1 cosygcosd  tana '’
b d 1 & 6 :
3 < Sln‘I'+ sxn\[rcota—f, f= rg}c’:/(‘)ls s @)
) -3
g =
3
=

. 1 1
50 AP L - Sln#r:;tanEa. ;

Digitized by Microsoft ®



§ 56] Lateral deviations due to rotation of the ghell 353

When ¢ has reached 90°, a has reached its greatest value, a,,, , given by
- tan 'k (a-u-) -f'

For small values of the angle a, the greatest value of a is then 2f; and the
average value of a is f.

With right-hand rifling the shell will drift on the whole to the
right, because the axis of the shell is placed aslant at a definite angle
to the vertical planc through the tangent, and so the point of the
shell is turned to the right.

The deviating force can then in a first approximation be taken
as proportional to the sine of this angle, or proportional to the angle
itself with small deviation; and so it is equal to Wf.

On the other hand this force is m %, where m is the mass of the

shell, and u=£jl—‘jj is the instantaneous velocity of the shell at right

angles to the plane of fire, and z denotes the lateral deviation at
time ¢; so that

m du _ const. Wf,

dit
where the constant is to be determined; or, if W is eliminated,'

du Crgcosé
m ‘d—t = const. T ) cessiscsssssssennsene (4‘)
du = — const. Or dO. v, (5)
ma

Strictly speaking, 7 and a as well as u and 8 are functions of the
time ¢, and little is known about them.

In a well constructed system of gun and shell, » and a alter only
slowly, and not to a great extent as appears from § 12 and §184; both
diminish as the time increases. Then, if §=¢, u=0, and t=0;

dz Cr
and therefore = = const. (p—6), riveinrinnn, «(6)
Cr ¢
z = const, poy (gbt —J- 09 dt) ) eeerereeeseneiin @,

and the notation is as before.
A preliminary calculation as in §§ 3 to 8 will give @ as a function
of ¢; and the integral of # can be worked out by help of the integraph.
The following rough approximation from (G) will give a formula
more convenient in practice: In a cylindrical shell C=m.4 R?*; and
c. 23
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a mean value of a for small deviation is proportional to the length of
the shell L, or 2RI, where ! denotes the length of the shell in
calibres. At first 6=¢; at the point of descent, # =— w; and so
¢—0 is 0 at first, and finally ¢ + w, and the arithmetic mean is
3 (¢ + ).

Thus the drift Z at the point of descent is given by.

7, tan A

1 R ) /O ®

where A is a factor to be determined by experiment, lying between
0-005 and 0-01 for most guns; and the notation is as before.

Z=2n

Ezample. Assume for a gun, vo=440m/sec, /=26 calibres; and for a range
of 1000 m, take ¢=3°20', 0=>5° 13, T=3'92 seconds: angle of rifling A=3°36';
thus

2= (0005 to 001) 20 12B 230
=17 to 34 m.

This is an amount that, as stated already, may easily be exceeded by the
natural scattering of the shells.

(3° 20 +5° 13" 3-92

3. A formula, based on similar hypotheses, for the lateral devia-
tion or drift has been worked out by P. Haupt, 1876, in which Z is
made proportional to (¢ + w) 7. I

According to Charbonnier, in high angle fire with low initial
velocity, we should take

Z=const. ¢, «ioviviiiiriiiiiininiiin. €)
but if the initial velocity is great,
Z=const.(¢p+w)T. ...cooiiiiiinninn. (10)

Proceeding with similar assumptions, E. Hamilton, 1908, has
suggested the formula

3
Z=const.R ZZHA (p+w)secd; .ocovenrannn 1)
and E. Muzeau has given the formula
Z=const. X tan¢.f(E), ..ocovreurnnrnn.. 12)

where

B 4 (2 (3E—2)t—1
FO=ts o par )

in which £ is the abbreviation for

__sin 2¢

§="x
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Taking into account a very large number of experimental results,
P. Bertagna considers that the formula, which suits the case the
best, is
Z=const. X sine. .c.oevririrnrnenannnins (13)
But this is doubtful.

In addition to the theoretical calculations given above, another may be intro-
" duced, proposed lately by Lanchester, for arriving at equation (4) in a simpler
way.

yThe original impulse of the shell, as stated already, is nearly identical with the
impulse due to the rotation about the axis of figure, in consequence of its speed ;
and so, as above in § 53, with right-hand twist the impulse must be represented
by a veetor SB drawn from the centre of gravity towards the base along the axis
of the shell.

The air resistance, acting along the instantaneous direction of the tangent,
tends to turn the shell about a node line SD, drawn perpendicular to the vertical

plane through the tangent to the left, with angular velocity %? By the laws

of gyroscopic action, this implies a turning moinent, with axis SV perpendicular
to SB and $D, and drawn upward.

Actually the shell is turned by this moment, so that its point swerves to the
right out of the vertical plane through the tangent, with its base to the left.

The magnitude of this turning moment is Crg—-f, and on the other hand it is Ke,

where A denotes the component of air resistance which arises in consequence
of the swerving of the shell about ST, and is perpendicular to the vertical plane
through the tangent; this tends to move the shell horizontally to the right.

The acceleration of the shell to the right being =5, and m the mass of the shell,

d?z
Dd2

d?z
K=n%? , and so

a8
dzz de
=

thh the minus sign, because 4 decreases while ¢ increases. Here (;0 g C:S 8;

consequently
d*z __ Cr gcos 8
a2 " ma v
This is equation (4); and Lanchester suggests that a should be determined
experimentally from observation of the drift z.

The notes at the end of this volume mention the theory proposed by
. G. von Gleich, which is seemingly of a very general nature.

4. Finally the formula may be quoted, which was suggested by
Mayevski-Vallier for the drift z at the range «

2= 4%6\[,-,,,2 tan A ; ('vofBR" Y& [ﬁ 83 : f;?:':; - M(’Uo):, sec*¢ (14)

23—2
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in which p is the radius of gyration of the shell about its axis, in
half calibres, P the weight of the shell in metric tons, ¥ is a con-
stant, about 041, but it is best determined experimentally for the
given system ; ¢ (v,), 8, u, D (u), D (v,) refer to the system of solution in
§41; M (v,) is given by Landenskisld’s Table, as well as B (u) and B (v,).

Ezxample. 2R=027: P=018: ,=505: length of shell=51: pu=08R:
Y=041: A=4"°. For ¢=1°11', #=1000, and z=04. For ¢=14° 10, 2=7000

Lateral deviations due to rotation of the shell

and 2=499,

VALUES oF THE FUNCTIONS M (u) AND B (u).
(Landenskiold’s Table.)

u 10° M (u) 104 B (u) w 10° 3 (x) 10* B (x)

700 00 00 400 1399 94560
690 14 34 390 1543 107560
680 29 137 380 1706 122670
670 45 317 370 1893 140370
660 62 580 360 2118 162230
650 80 935 350 2391 189670
640 99 1392 340 2724 224600
630 119 1953 330 3133 269600
620 140 2635 320 3640 328400
610 163 3448 310 4270 406000
600 188 4404 300 5080 510300
590 214 5516 290 6050 651000
580 242 6801 280 7934 832500
570 272 8274 270 8651 1065800
560 305 9953 260 10356 1366400
550 340 11863 250 12422 1755300
540 377 14027 240 14950 2262000
530 417 16467 230 17990 2910000
520 460 19216 290 21610 3725000
510 507 29305 210 25950 4746000
500 557 25774 200 31200 6035000
490 612 29659 190 37820 7667000
480 672 34020 180 45550 9744000
470 737 38897 170 55450 12409000
460 807 44357 160 68990 15862000
450 884 50470 150 | 84090 20390000
440 968 57320 140 105120 26420000
430 1060 64990 130 133140 34550000
420 1161 73590 120 171300 45780000
410 1973 #3330 110 224600 61640000
400 1399 94560 100 301300 81690000
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§ 57] Lateral deviations due to rotation of the shell 357

§ 5617, Experimental demonstration of the oscillation and drift
of a shell.

1. Perrodon’s apparatus.

A truck is allowed to run along curved rails, of the shape of the
trajectory, carrying a Bohnenberger machine with a model of the
shell.

The shell hangs frecly from a Cardan suspension and is rotated
swiftly. The air resistance is represented by a spiral spring, acting
in the direction of the axis of the truck, which corresponds to the
direction of the tangent to the path.

In this way conical oscillations are set up, and Perrodon seeks in
this way to determine the condition of stability of the shell.

2. Lecture apparatus of Pfaundler.

This serves to demonstrate the stability of the axis of a rotating
shell, and its conical oscillation. »

A pointed shell is placed in a horizontal frame, suspended so as
to be easily movable, and the shell is set in rotation. At the rear
end wind vanes are attached, and can be moved into any position.
The conical oscillations can then be observed, to one side or the
other, according to the direction of the rotation, and the setting of
the wind vanes.

3. Inipulse apparatus of Ludwig.

A small wooden model of the shell is placed at the end of the
spindle of the apparatus, which can be set in motion by hand. A
blow of a hammer on the other end of the axis will then give the
impulse to the model of the shell.

4. Lecture apparatus of A.von Obermayer and V. von Niesiolowski.

A strong blast of air is blown from a powerful fan against a model
of the shell, mounted by Cardan suspension so that it can turn
about the centre of gravity. The precession due to the air resist-
ance is thereby shown.

Magnetic forces can also be employed to produce a similar effect.

5. The author employs the following method of demonstrating
the oscillation and drift of a shell.
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A. Throwing a wooden disc or flat stone.

The gyratory motion of a shell can be shown very clearly with a
circular disc of wood, about 8 cm in diameter and § em thick, or
with a smooth flat stone, by throwing them a considerable distance
in an open space.

As usual in throwing such bodies, the disc is to be held between
the thumb and middle finger, and partly gripped by the forefinger,

The disc is held at right angles to the plane of flight desired,
and is thrown so as to make an angle of 30° with the horizon. In
hurling the disc, the forefinger rotates it clockwise, when thrown
by the right hand, about an axis of rotation directed upward and
backward. This gives the initial position of the impulse-vector.

The air resistance meets the front side of the disc, and tends to
turn it clockwise about a horizontal axis, drawn to the left of the
plane of projection. Thence we get the position, as in § 53, of the
next vector; and then it can be predicted how the disc will turn and
to which side it will swerve.

Actually in the case of a disc, a drift to the left will oceur, if
thrown by the right hand, to the right if thrown by the left; and it is
very pronounced even in a range of 40 m.

B. Model mortar with wooden shell.

A wooden base serves as the carriage, on which any one of four
Mannesmann tubes may be mounted. These are provided with a cast
zinc insertion to represent the rifling,a contrivance for receiving a small
charge of black powder, up to 10g, and the breach is closed by a
bayonet joint. Two of the tubes have a right-hand twist, angle of
rifling (@) 43° 40" = 33 calibres, (b) 17° 39" = 10 calibres; the two others
have left-hand twist with the same angles of rifling; calibre 7'9 cm.

The shells are made of red beech, and are provided with grooves
to correspond with the rifling of the bore. They are of various lengths,
30-27, 35'5, 36 cm ; one of. the shells is provided with an axial hole,
in which a bar of iron can be fixed (either forward, midway, or
behind), so that it is possible to observe the influence of the positions
of the centre of gravity.

The angle of elevation is measured by a quadrant. The firing of
the powder charge is made by a fuse.

- For carrying out the experiments, an open space of about
400 metres is required; it must be as nearly calm as possible, as these
light wooden shells are influenced powerfully by wind.
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The results refer mainly to a shell 3027 cm in length, calibre
79 cm; length of the cylindrical part 2375cm, weight 0930 kg;
moment of inertia about the long axis C = 000012 mkg sec? ; about the
cross axis through the centre of gravity A =0-000515; with a charge
of 5 g, v,= 2388 m/scc; with 10 g charge, v, =414 m/scc.

(a) Tube with the smaller right-hand twist, angle of rifling 17° 39",
5g charge.

The shell flies like an arrow, even up to an angle of departure of
¢="T1°

Looking at the trajectory from the side, the long axis is seen to
lie in the tangent to the path; range, at ¢ =45° 107 m, time of
flight T'=5'3 scc. With a gradually increasing angle of departure the
drift to the right grows continually.

After ¢ =71° the drift changes to the left, and the shell strikes
the ground with the base first.

(b) The same tube; charge 10 g.

At ¢=45°, maximum range X =321 m, time of flight T'=9-3 sec,
drift to right Z =39 m.

At ¢="T0° range 183 m, T=12"4sec, Z=61 m.

Change from right to left drift at an angle ¢ lying between 77°
and 80°. At ¢=280° the shell descends with the base first; once this
happened too in a flat trajectory, and then the point was directed to
the right.

Drift to the left at ¢ =80° was 66 m, and sometimes rather
less.

It can be seen with an angle of 80° that the shell has a slight drift
to the right up to the vertex of the path, and that the drift to the
left begins beyond the vertex and rapidly increases.

(¢) Tube with the greater right-hand twist, angle of rifling
43° 40",
The axis of the shell remains apparently parallel to itself for all
departure angles; and it seems on close observation as if the point of
"\ the shell were a little to the right.
v Change from right to left drift at about ¢ = 53°, with a charge of
- 5g, as well as with 10 g.
Range at ¢ =45° with 5 g charge is 55 m, I’'=4-26 sec; at ¢ =45°
and 10 g charge, range is 180 m, 7' = 8-24 sec.
The angle of rifling is thus too great for this shell.
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A longer range was sometimes observed than would be obtained
in a vacuum; the supporting influence of the air on the surface of
the shell seems to be the cause.

(d) The same tube, shooting vertically upward.

The shell flies very nearly parallel to itself, as a sort of diabolo-
top, and so arrives, with a strong humming noise, back again in
almost vertical position, and strikes the ground with the flat base.

(¢) Tube with the smaller right-hand twist, angle of rifling 17° 39';
shell of greater length, 355 cm.

Very pronounced nutational oscillations ensued; the point of the
shell appears to describe complete circles round the tangent to the
path; seen from the firing point the shell looks like a great disc.
The twist is not enough for this length of shell.

In the employment of the tubes with left-hand twist, there is a
correspondmg change of sign in drift, direction of the oscﬂla,tlons l
precession and nutation, and so forth.
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CHAPTER XI

The application of the theory of Probability
to Ballistics

§ 58. Introductory,

There are many wholly accidental causes which may tend to deflect
a shell from the target. Thus, in spite of all the trouble that may be
expended on directing the aim, it may none the less be inaccurate:
there may be slight variations in the density of the air or in the
direction and velocity of the wind, which cannot be taken into ac-
count: with rifles, it is not possible to consider the vibratory motion
of the barrel to be an absolutely constant factor, and there may also
be small changes in the initial velocity. A deviation due to any one
of these causes may be considered to be accidental, and to take place
in a wholly irregular manner. But if a large number of shells are
fired, these deviations are subject to definite laws, similar to those
which hold in all exact measurements of a physical or technical
nature. The mathematical theory of probability applies in this case,
Jjust as it does in the throwing of dice or in questions of life in-
surance. If a single shell is fired, it is, generally speaking, impossible
to say whether it will go to the left or the right of the target, or
whether it will be above or below the mark. Equally it is impossible
with the help of Tables of Mortality to say when any individual will
die. On the other hand we know the definite fact that out of 100,000
male persons, 17,750 will reach the age of 70, and out of 100,000
females, 21,901 will attain that age: and if 100 bullets are fired from
a known rifle at a target, we can also tell how many will fall within
a circle with a radius of 20 ecm. The following considerations apply
to all quantitative measurements, and not only to the deviations of
shells: therefore they can be used in connection with accidental
variations of any character, such as the measurement of gas pres-
sures or the velocities of shells. But for the sake of simplicity, we
shall mostly confine our attention to the deviations of bullets, in so
far as ballistical applications are concerned.
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362 Accidental deviation of shells [C}i. XI

The Mathematical Theory of Probability.

The following propositions are here briefly stated, and it will be
easily seen how the conclusions are drawn.

1. Let us call the mathematical or absolute probability of an
event, a: then if » is the total number of cases, and ¢ is the number

of cases in which the event happens, we have a=%. Thus we see

that @ is a fraction less than unity, or at any rate not greater than
unity. It is equal to 1, if the event is certain, and equal to 0, if the
event is impossible.

Example 1. If two dice are thrown, what is the probability that the total will
be 7? The number of possible cases is 36, since each of the 6 sides of the one dice
may be combined with any one of the 6 sides of the other : therefore n=36. The
only cases in which we get 7 are by combining 6 and 1: 5 and 2: 4 and 3: 3 and 4:
2and 5: 1 and 6. There are thus 6 such cases, and t=6. Therefore a=3%=1. The
chance that 7 is noz thrown is §, since there are 30 possible combinations in which
the total is not 7.

If we take the chances of throwing 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, we find that

they are respectively ¢, F5, 95, o> 3% 35> 75 35 35 55> and J5. Therefore
there is a greater chance of throwing 7 than of throwing any other number.

Ezample 2. An urn contains 20 balls, of which 7 are white, 5 black, and 8 red.
The chance of drawing a black ball is obviously J5=1. 1

Example 3. An urn contains 7 white and 6 black balls. If 5 balls are with- ]
drawn, what is the chance that three will be white and two black? The number
13!

of ways in which 5 balls can be withdrawn is (153> , Where (153) denotes Sk

Therefore n= (153 > On the other hand, 3 white balls can be withdrawn in (;)

ways, and 2 black balls can be extracted in (g

bined with any of the methods of withdrawing the white balls. Therefore |

()G

(6 3/\2

t= (3) (2) . Therefore G=—m—
| ()

2. Let us suppose that there are three mutually exclusive events,

4, B, and C: the chance of A’s occurring is @, of B is b, and of (' isc.
Then the chance of the occurrence of any one of them is @ +b +c.

) ways, each of which can be com-

Ezample 1. What is the chance of throwing either 2 or 3 or 4 with two dice?
The absolute probabilities of any one of these events are, as we already know, g,
2, and . Therefore the chance of throwing any one of them is s+ +55=%-

F
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Erample 2. Let us tako the case of a target, which is divided into an infinite
number of parallel vertical strips: let the chance of hitting the first strip be dy,,
of hitting the second strip bo dy,, and so on. Then the chance of hitting the
target is dy; +dy,+...=2 dy=[dy, where the limits of the integral extend from
left to right. The application of this proposition will be scen later. The events
are considered to be mutually exclusive, on the assumption that the projectile
does not break to picces, in which case the target might be hit in several places
by the one shell.

3. Let us take several independent events, 4, B, C, ..., and let
their respective chances be @, b, ¢,.... Then the chance that they
will occur simultaneously, or in a specified sequence is equal to the
product of their separate chances: that is, it is equal to the product
abe.... But if the events are dependent, then the probability that 4
occurs, and then B, and then C'is abc, on the assumption that b is
the chance of B’s occurring, after A has happened, and ¢ is the chance
of C’s occurring, after A and B have happened.

Example 1. Two persons, P, and P,, throw two dice-boxes at the same time.
What is the chance that P, throws a total of 2, and £, at the same time throws
a total of 42 The chance that P, throws 2 is a=45. The chance that P, throws
4 is b=4%. Therefore the chance of the combined events is g X & =713x, while
the chance that this does not happen is 43}. Therefore the odds against the
event are 431 to 1.

Ezample 2. A boy thinks that the chance of being promoted at Easter is §,
and the probability of getting a bicycle at the same time is 4. Then the chance
of both events happening is }, on the assumption that the two things are in-
dependent of one another. This answer will also be correct, if the events are
mutually dependent, provided the boy estimates his chance of getting the bicycle
at 3, after he has got promotion.

Ezample 3. A man, 4, is 35 years old, and his wife, B, is 28. What are the
chances that after 20 years (1) both are alive, (2) one is dead, (3) 4 is alive and
B is dead, (4) 4 is dead and B is alive, (5) both are dead, and (6) at least one of
them is alive? The tables of Mortality state that out of 100,000 males, 51,815
reach the age of 35, and 36,544 attain the age of 55: while out of 100,000 females,
58,647 reach the age of 28, and 46,605 -live to 48. Therefore the chance that
4 survives for 20 years is a=%$544, and for B is b=45§?%. Then the chance
of (1) is ab=056: and of (2) is 1 —ab=044: and of (3) is & (1 —-b)=0145:
and of (4) is b(1—a)=0234: and of (5) is (1—-a)(1—0)=0061: and of (6) is
1-(1-a) (1—-b)=094. The sum of the chances of (1), (3), (4) and (5) is unity,
since one of these cases must arise.

Ezxample 4. In artillery practice, let the chance of a short range be a, and of
a long range be b: and let the chance of a wrong observation be ¢, which Mangon

considers to have the value (-1, Then the probability that a short range is
observed is the same as the ghance that either the range is short and actually
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364 Accidental deviation of shells [ocH. X1

observed as such or that the range is long and is erroneously reported as being
short : this is actually a (1 —¢) +¢ (1 —a).

Ezample 5. Let the angle of departure be suitable for a range of 4000 metres;
let the chance of a short range (—) be #, and of a long range (+) be }. With an
elevation for 4100 metres, let the chance of a + be 4, and of a — be 1. Then the
chance of getting 4000 — and 4100+ is  x =3,

§ 59. Continuation.

1. Probability of repeated experiments.

Two events, A and B, are to be considered (such as hit and miss),
of which one must occur: if their absolute probabilities are @ and b,
we have a +b=1. If the experiment is repeated three times, the
following cases are possible. (a) A may occur three times in succes-
sion: the probability of this is a® (b) A may occur twice and B once.
The chance of thisis a?h. On the other hand, if the order is immaterial,
we must consider the probability of the sequence 4,4, B; or 4, B, 4;
or B, A, A: the chance of this is 3a%. (¢) A may occur once, and B
twice: if the sequence is immaterial, the chance is 3al®. (d) B may
occur three times, and A not at all: the chance of this is % These
various expressions are the terms in the expansion of (a 4 b)>. More-
over 1 — &% is the chance that 4 occurs at least once: and 1 — (5*-+ 3ab?)
is the chance that 4 occurs at least twice. Thus we have the follow-
ing general law. If A and B are two events, one of which must
happen (such as hit and miss), and if their chances are ¢ and b, then
the probability that in s trials, the event A happens m times, and B
happens s —m times in any order is

S ; 8= —.__L m -
(m)amb m_m!(s—m)!a L

Ezample 1. The probability of throwing doubles with two dice is fr=}.
Thus the probability of throwing doubles exactly three times in 600 throws is

600! /1\3 /D\ow
‘3!5971'(6)'(&) :

Ezample 2. After how many throws is the chance of throwing doubles at least

once equal to 4?7 3=1-(§),, and therefore s=}—2§—%=3'8. So that after 4 throws,
§
the chance of throwing doubles is a little more than .

Ezample 3. The probability of a shot being short is denoted by @, and of an
over is 1 —a=>4, and 5 shots are made. The chance of 3 short and 2 over, in any
order, is 10352 The probability of at least 3 overs is the total for 3 or 4 or 5,
in any order, and so is 1023+ 5abt+55. The chance of 2 overs at most, is the
same as for 1 or 2 overs, and so is a5+ 5a%d +10a%b2,
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Ezample 4. A gun is fired at the target, and the chance of a short (- ) and
of an over (+) is the same, viz, §. Six shots are fired at the target. Then the
chance, in any order, of

3 3
3+ and 3, is (2) (%) (;) =§%’,
4 2 B
2-and 4+, (o) (5) (3) =
6\ /1\ /1\* 15
srodis () () () -a

The chance that one of these cases happens, is then

20+15~l-15'=

o4 0-78.

In 100 such groups, 78 will then give the range correctly.

2. Continuation. Law of great numbers.
The chance, that in s = m + n cases, the event 4 happens exactly
. . !

m times, and B happens n=s—m times, is equal to _m‘s;n! a™b™ and
is generally small; it is greatest when m lies between sa—b and
sa +b.

The maximum is then when m = sq, or if sa is not an integer,
when m is the integer between sa—b and sa +b. An approximate

. . . 1
value of this maximum is m.

The greater the value of s, the closer we come to the combination
for which m:n=a:b.

If for example there are a million balls in an urn, 100,000 white
and 900,000 black, and the probability, @ or b, is required of drawing
awhite or a black ball, then @ =, b ={; andwhen the ball is replaced
each time after drawing, the ratio m of the number of the white balls
drawn to the black is always nearly 1:9.

3. Continuation. Law of Bernoulli-Laplace.

As stated, the chance of throwing doubles with two dice exactly
100 times in 600 throws is rather small, and may be taken as being
equal to

1 1
VT x600xixg) 23°
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Much greater on the other hand is the chance that in 600 throws
about 100 doubles are thrown (80 to 120 times for instance).

The following law of Bernoulli-Laplace is useful, and with the
help of Stirling’s law provides an approximation, which is fairly
accurate if s is large.

The probability is

pa 2 [evas

_.yﬂ
V(2msab)’

that in s cases the évent A, having the absolute probability ¢ =1 —b,
happens from

30— 7y +/(2sab) to sa+ 1y +/(2sab) times,
so that the ratio 7—; lies between the limits

/()

The following form of the law can be used in simple numerical ap-
plications: we assume that m lies between the limitssa + y[+/(2sab) — 4],

)
and the probability will then be P = — f T et dt.
N lo

For the special value P=4, y=p=0476936; in this case

v +/(2sab) — % is called the probable deviation.

A generalisation of this law, given by Poisson, relates to the case
where the chance for the occurrence of the event A varles from one
case to the other; a, in the first case, a, in the second, and so on.

Denote the mean chance

t+a,+...
s

by a;

and further put b;=1-a,, by=1—ay, ..., b=1—a; finally put

m=,\/[§ (@b + anby + )] .

Thus in s events the probability is

_’ﬂ
cy/(7s) (ms)’

that the event A happens between as T y« /s times, or % lies between

P=2 f et d
= LA

the limits a F 25,

A8
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N . m
Thence it follows, as 8 increases, that < approaches a.

Ifthe chances a,, @, ...,as wellasb;, by, ..., are assumed equal, then
« = #/(2ab), in agreement with the Bernoulli-Laplace law.,

Example. What is the probability that in 600 throws with 2 dice, doubles
occur from 80 to 120 times? Here a=gk=}, b=§; sm600, y/(2sab) —4 =20
y=1'59; hence I’=097 is the probability.

4. Bayes's rule.

It is known, for example, that a million balls are in an urn, and
400,000 of them are white, and 600,000 of other colours; so that the
chance of drawing a white is @ = £, and of the reverse is b = §; 800 balls
have been drawn and replaced. What is the chance that of the 800
balls from 310 to 330 of them are white ?

We have already dealt with a problem of this character, but a
different question arises if all that is known is that there are a million
balls in the urn, of whicha certain number are white. After 800drawings,
320 are white and 480 another colour. With what degree of accuracy

" can this trial determine approximately the unknown ratio @ of the
white to the total number of balls? What is for instance the probability
that the ratio a =$%3 =14 as determined from the 800 events is true
within 5 or 2:5°/,; or in other words, what is the probability that
the number of white balls in the urn, is greater than 375,000 and less
than 425,000 ?

In these cases it is required from the observed events to deduce
inversely the unknown cause, and to make some conclusion about
« and b.

Here the approximate rule of Bayes is employed: when the event
A has an absolute probability a, and in s =m + n occurrences, it
happens m times and fails n times, the probability is

I
P—V—WJ‘e dt

0

2mn

~that the unknown number a lies between the limits Z_—L Fo ,\/ —

where # is some arbitrary number.
In the special case of P =4}, then a lies between

mo_ 2mn .
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The greater the value of s, the closer is a to the ratlo —; thisis

the inversion of the law of great numbers.

Erample 1. Take the urn problem (Czuber): here s=800, m =320, n=480;
QLB%)O%@ 410 ; thence y=10205, and thus P=0851,

With the probability 0'851 it can be assumed that the ratio of the number of
white balls in the urn to the total number of balls, can be taken as 22§, within
25 °/,, or that it lies between 1§ and }§; or that the number of white balls lies
between 375,000 and 425,000. :

and take y

Ezample 2. Half the sheets were lost, giving a record of hit and miss.
Counting up the numbers preserved, 240 hits were found and 120 misses. It was
most likely then that the complete list of 720 shots had 480 hits and 240 misses.
How far can this assumption be wrong? Here =360, m =240, =120, P=4%;

80 that
_240_ 2% 240x 120 480F 38
“‘360*04‘69\/ 360° 720 °

Thence the number of hits is most likely to lie between 442 and 518.
The papers of Czuber, as well as those of Sabudski, Eberkard, and von Kozik
should be consulted for the proof of the Law given above.

5. The probability of predictions.

Suppose m + n cases for the event 4 have been observed, whlch
happens m times, and fails n times.

Then the probability that in p + ¢ subsequent cases the event 4
happens p times, and does not occur ¢ times is

1
m+p — pntgq
(p+q)!fo“c (1-2) dx=(P+q)l(m+p)!(n+q)!(m+n+1)1
plg! flwm(l—m)"dw plglm+n+p+g+1)Imlinl
o

Remark 1. The formula of Stirling refers to the approximate calculation for
high numbers : he assumes that
nl= ~nr e J(2rn).

This may be employed for high numbers, and even as low as n=10.

Remark 2. The definite integrals employed in the theory of Probability will
be found in the Tables 14 and 15, Vol. 1v.
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§ 60. Theory of the deviation of projectiles. Measure of
the accuracy.

A number of bullets are fired at a vertical target, the rifle being
very carefully adjusted after prelimi-
nary practice. The aim is to hit the
point 2f, about which the accidental !
points of impact Py, P,, etc., will arrange :
themselves in such wise that few will E
be far from the mark, and most of them ;

1

will be near M, equally distributed to
the right and left, or above and below.

For the present only the lateral
deviations are to be considered, right
(positive) and left (negative). Denote them by £, £, f;,...; they are
the # coordinates of the various points of impact in the coordinate
system, of which the origin is placed at 2.

The fact that a small error occurs more frequently than a large
one, and that the hits are symmetrical with respect to the y axis, may
be inferred from the consideration that these errors f;, f;, f3, ... arise
from several independent sources of error.

Thus for example there are three sources which may cause error:
(a) small alterations of the wind velocity may cause the deviation of
—2,—1,~0cm; (b) small alterations of the vibration of the barrel
may cause lateral errors, right and left, —1, 0, +1 em; (c) error of
aim, —1,0,+1, +2, +3 cm,

Their combination can produce the resultant deviations — 4, — 3,
-2,-1,0,4+1,+2,43,+4emin 1, 3,6, 8, 9, 8, 6, 3, 1 different ways
respectively.

For instance, the deviation — 4 can arise in one way —2, —1, — 1,

The error O on the other hand can arise in the following ways:

-2,-1,+3|-2,0,+2|-2,+1,+1|-1,-1, + 2|
-1,0,+1{-1,+1,0]0,—-1,+1](0,0,0)}0, +1, -1/,
A de., in 9 different ways (Czuber).

Pe—l]"
iy

R L P

Ezample. Shooting with a rifle the deviations to right and left were measured
for 100 shots: between =0 and z=+4cm, 15 positive, to the right, and 16
negative to the left; between x=4 and x=8cm, 13 positive and 14 negative;
between 8 and 12cin, 11 positive, 13 negative; between 12 and 16cm, 7 posi-
tive and 7 negative; between 16 and 20 cm, 2 positive, O negative; between 20

C. 24
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370 Accidental deviation of shells [cH. X1

and 24 cm, O positive, 1 negative; between 24 and 28 cm, 0 positive, 1 negative
deviation ; total 100.
The fact is that the smaller deviations are more frequent than the large.

The same effect is produced in the apparatus shown in the figure
at the bottom of the page, where the
flying shot are replaced by grains of
millet or lead shot, and the scatter-
ing is effected by a number of metal
pins from which the grains rebound.

If the deviations in a large num-
ber of shots are plotted as a function
of z, the curve assumes a certain form,

The equation of the curve was proved by Gauss to be n=ae#,
and can be deduced on theoretical principles. For the present it will
suffice to say that the formula has shown itself to be very useful in

Ppractice.

B C
RN
5
E xd
€
8
4 D
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§ 60] Accidental deviation of shells 371

At the distance « from the vertical middle line M a narrow strip
1s drawn, of unit breadth.

|
¥
rd

M NdT z

P

The probability of hitting this strip is  =ae=##, or if n is the
total number of shots, then nae~"*** shots fall on the strip.

With an indefinitely small breadth of the strip, and with PP at a
distance x from M, the number of hits is nae~**'dz; in short,
nae~¥* dz denotes the number of shots which have a deviation z to
the right or left of the vertical through M.

It is required next to determine the constants a and h.

An infinite target must always be hit; that is, the total number
of shots falling on all the strips of the target of breadth dz, from
Z=—00 tox=-+ o0 is equal to n, or

o
na f et dp=n,
— T

and since

12 ‘\/7Z h
—hz — —
j, e dz = W a—‘/ .

Thus «/iﬂ' e~ dz is the probability of a deviation z, and

h o4
Rz
is the number of hits on a strip PPQQ of infinite height of which the
sides PP, Q@ are at distances ¢ and d from A ; this is the area of the
~ curve 4 BCD (on the next page), multiplied by n the number of shots.
If it is required to hit the space PPQQ on the target, of breadth 2!
and placed symmetrically with respect to A/, the probability of hitting
it is given by the area ABCD, and is equal to

+ ’
%r e W2 dg = 3—2_ j e W dy;
[ ] = 0

eV dz

24—2
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372 Accidental deviation of shells [cH. X1

and since hz =t, do = % , then the probability is

2 ["Moegt=g
“mlo ? = S0
—~—C
M A
c—p d
P /// 0
This integral must be calculated as a function of 2I. Since
_ 22z
€ z=1—Z+§—I—§—!...,

and in consequence of its uniform convergence

o t A t? (7 t® t
— 14 —_ —_—— —- N — ———
Je dt—J(l '+ 55 3!+4!...)dt t—5+575 3T

the probability of hitting the strip PPQQ of breadth 27 is

ho[e=* . 2 J-t=hz .
— 12t = — e=Udt
VWJm=—le “ N Jico

2 1, 1
v [hl - g(hl) + m(hl)5 ] = ¢ (hl),
as in Table 14.

The constant h is the measure of the precision of shooting with
the weapon employed. The precision of hitting, so far as concerns
the deviations in the direction of the # axis, is given by the pro-
bability of hitting the thin strip that goes through M; and this
probability is

h e _h
/\_/-'I—T v dx = 7';1' dz.
If this is Jn dz for the first weapon, and ) dz for the second, the

A A
ratio of the measures of precision of the two weapons is &, : &,.
In place of h other convenient measures of precision are employed,
which can easily be taken off the target diagram.
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§ 60] Accidental deviation of shells 373
The following are the various mean values of the deviations that
are employed :

The arithmetic mean of the deviations, f;—+j—;—- , is exactly or

nearly zero and is therefore useless. We may take on the other hand
the so-called “ mean guadratic deviation”

!

or, sometimes, the “mean cubic deviation”

o \y(fle?:%..)’

or the average deviation,

E=(fl)+(f2)7:‘(fa)+’

where the deviations are all taken with the + sign; or finally the
probable or 50 °/, deviation w, for which the probability is %; and %
can be calculated from any one of these measures of accuracy of fire,
in the following manner.

(«) The mean quadratic error, p= \/ (%2) .

According to the definition of w, ny?®is equal to the sum of the
squares of all the deviations £, f; f; ..., and so is = (deviation z,)* times
the number of deviations of magnitude «; + (deviation z,)* times the
number of deviations of magnitude z,, and so on. Then according to
the above

nud = a2 \—%_ e dg, . n+ z? %r Rzt g n + ...
=2 [ e,
IVL /0

This integral is to extend over an infinite plane, and so from

x=—ow to =+ o, since the law of Gauss includes errors infinitely
great.
But
[ eoreden i,
and so .
nh A 1 07071 70 1
n/‘Lz - % ﬁs ) h M \/2 ,U-

by which & is determined.
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2111
n

Here, in the definition of E, nE=sum of the products of the
deviation 2 and the number of deviations corresponding to z, and

(b) The average deviation E =

w h —h2x?
nE—f_wwv—?re 2 dx.n,

and since
% [ a1
v ], T de=
1 1
E=vrm Ty

giving another determination of 4.
At the same time a relation is given between u and E, that is

N2 _ o
E=pu v 0'79788u.
(¢) The probable, or 50 °/, deviation w. ¢

This is the deviation for which the probability is £; or in other
words, 2w is the breadth of a strip of indefinite height, placed sym-
metrically about A/, which contains half the shots.

Then from the preceding, w is to be determined from the relation

nh [T=tw
=— f e d,

r=—uw

or — e tdt==.
N7 J =0 2

This integral is given in Vol. 1v, Table 14, and denoted by ¢ (f);
and ¢ (wh)=14.
The Table gives
hw=04769363=p;
and w= % = pun/2 =0'6744898 .
Collecting the results, we have

‘_‘——=—-——=£. = {)- .
= 5 p=014769363;

and the probable deviation error is
w=06744898u = 0-8453476F ;
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§ 60] Accidental deviation of shells 375

the mean quadratic error is
© p=14826021w=1-2533141F;
and the mean average erroris
E=079788464=11829372w.

i

In the German Army the “mean error” is taken to mean the
average error £; and the “mean deviation” is not the double of E,
but the double of the probable error w; carc must be taken to
notice this distinetion.

Remark 1. According to Gauss the probable crror w can be determined with
less accuracy in the following manner: the deviations f; f; f; are arranged injorder
of absolute magnitude, and the middle one is taken if » is odd, or the mean of
the two middle ones if » is even and here w is denoted by u,.

Thus for example, if the deviations are

—28[{+09(+04|-02|+03|=04|+01|-16]
and they are arranged in the order
01]02|0:3|04]04|09|1-6|2'8,
S ——
then w=w,=04.

This method is employed frequently in the cases where a rough value of w
will serve.

Remark 2. The question may be asked as to the accuracy of the value of g,
or E, or w,.

Gauss’s approximate rules are given here, and hold only when = is large ; the
work of Czuber may be consulted for further details.

Probably
\/ = is true to w1thm x 100 per cent
> 05096
k= _lnf’ 3] 2] J/L % 100 »
. 0 1861
Wy ” ”» T %100 »
It is evident that the determination of w or A, from p= fz , is the most
accurate.

Suppose for example, from the sum of the-squares of the deviations that u has
been calculated =30 cm from ==10 shots: then

0-4769
p=30 (l + In

tho probable limits of u are +4'5 cm-: while the probability is that u is greater
than 255, and less than 345 cm. It is near enough then to say that u is about
30 cm, with a probable error of 15°/,.» ~-

=30(1+015)=304+4'5;
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Remark 3. The Gauss curve 5= Ji e~ has two points of inflexion. The ab-

scissae of the inflexions are given from n” =0, or 1 — 2A%2#=0, ;= + +— £ J2 There-

fore #y= +p, and the abscissa of a point of inflexion is the mean quadratic
deviation p. It can be shown too that p is the radius of gyration of half the area;
and further that the mean deviation E= w— is the abscissa of the centre of
gravity of half the area.

Remark 4. In place of the Gauss function q=Jie-h’z2, many other sugges-
tions have been made, such as r;=1—+a72, y=a (l - b—z) etc. Hélie and Simpson
excluded very large errors, and took two straight lines 4B, 4 B, symmetrical to

the vertical through 2/, such that n=aF % 2.

Then BB,=2b is the breadth of the vertical strip of the target, symnietrical
to M (11, 22) which eontains all the shots.

L]

Bi_—i%/ Z\_—EB

€

The number of hits in the strip (11, 22) is

=b
anz < -—%x)dx:n,
=0
1 1 x
a=z,rl=z(l—3) .

Then thenumber of hits in the strip of the target (3 3, 4 4) symmetrical to J/,

of breadth 21, is
2')1/ 3 (1-5) dz

=n times the area ACDFEA=n % (2-—%) .

and thence
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Put the probable deviation w in place of b, taking I=w; so that the number

. 1 why W\ _ 1 - _1 b
of hits = n; then (2 ) L b(l :/—2)-.73-'0_7’3
Then the number of hxt.s falling on the strip (3 3, 44) of breadth 2/, expreased

by the probability factor = 1nstead of ) is given by

nl I i
V= 5073 (2 - 3'073w> =0325x (2- 0'325x),

where & = I _ _Qf breadth of the target strip
w 2w width of 50 °/, zone  *

But the law of Gauss has always been considered to be better than the others.

Ltemark 5. Based on the law of Gauss the number of hits on a strip of the
target symmetrical to the mean point of impact of breadth 27 is

N—Q)_Z]Zf hlzidx jn —t! dt—7l¢ (/ll)——"d) (0 4769 - )

Jr

(consult Vol. 1v, Table 14). It is probably ' S .
better to apply the table of (%) in ! 5 ﬁ — :
Table 15, giving immediately N=ny (1%) -re
as a function of the so-called “probability
factor” ?i. 217116)25 g5 6171 2

Wij:}l n=100, then 100+ (1%) gives the
percentage of hits in the strip of breadth 2/, | | '—.—8520//:_. :
when the 50 °/, error is w. b 96, :

. 1002

A brief extract from the table for (f;)
is given in the adjacent figure, and is of great use in practical ballistics, giving a

diagram of the target strips about A of breadth 2w, 4w, 6w, 8w (§Tl1;=l’ 2, 3, 4,)
and the corresponding percentage of hits.

§ 61. True and apparent deviations. Indirect measurement
of ballistic values.

" It has hitherto been assumed that the true position of the mean
point of impact is known. If we speak of deviations to right and left,
this assumes that we know X, the abscissa of the mean point, 3, about
which the hits are arranged: the deflections, f;, f, fs of the various
points of impact, P, P,, P;are then measured from this mean point.
If £, &,, & are the abscissae of the points of impact, then &, - X =1,
£ - X=f, ete.
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378 Accidental deviation of shells [cH.x1

In point of fact, A is not known: instead of it, we take the probable:
mean point, 0, the position of which (&, 7,) is the mean of the points.
f, of impact, (&, m), (& n.), ete. Therefore &, is the
E arithmetic mean of the various abscissae, and is

E+E+E+..
n

~

eaual to , and the ordinate is.

=
S

calculated in a similar manner. If we consider
equal weights to be distributed at the points of
impact, then O is their centre of gravity. And O
will be the most probable point of central im-
pact, if the proposition of least squares can be
considered to be experimentally true. This can.

2 be stated as follows. If n observations, &, &,, ...
are made to determine the value of a certain magnitude, then the most.
probable value, a,is such that the sum of the squares of a — £, a — &,,
etc., is a minimum. So that in this case, the absclssa is that value of a
for which

I
]‘

—

l

[

—— "

|

e — . e

(a=&EP+(a—&F+@—&F +...
is a minimum. Differentiating, we get
_E+E+EF... L
= TE e g
and the probable ordinate is obtained in the same way.

The deviations of the different observations from the true value
are called the true deviations and will be denoted by f,, £, f, ...; the
deviations from the probable value or the arithmetic mean are called
the apparent or probable deviations, and may be denoted by Ay, 2,
ete. In the present case, when reckoning, the abscissae, Ay, A, ... are
the distances of the various points of impact from the vertical through
0. These apparent deviations can be found by experiment, whereas.
the true deviations cannot be so found: usually in ballistical work,
we are consequently concerned with the apparent deviations. We
have to devise a method of determining the accuracy of fire from the
values of these apparent deviations.

The difference between the true and apparent deviations is perhaps
more clearly shown by the following example. A square, with sides
exactly 16 cm long, is very carefully drawn, and the planime’cer is
passed over it ten times. The true value of the area is X = 2560
sq cm: the differences of the various readings were found to be f;, fz,
ete., and the accuracy was given by

S /0961 .
puthidh o =012° .
= o 1o 0-31 sq cmn = ./o
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The arithmetic mean of the ten measurements was & = 2561 sq cm.
The differences with regard to the latter value, ;, A, A, ete. gave
IA=08650. It is now a question of determining the mean quadratic
error, g, from 2%
Obviously
fl = -X A= gl - Eo;
f 2= X A= Ea - Eo,

ete.: therefore

fl —M=§-
fa=da=E= X} corvvsncnneiniiiiiiinins (1)
f;_)"a= Eo“
where
nb=L+E+E+
Therefore
S

By adding equations (1), we get
fitfotfst o =n(f—X),
and therefore

ﬁ—7~1=‘fi‘t‘é-—;h=ﬁ—7\z=

or
M=ﬂ—ﬁ+ﬁ+”Eﬂ;1ﬁ—é—é—--' ...... @)
M=ﬂ—ﬁ+ﬁ+“=n;1ﬁ—é—é—

These equations connect f;, f;, fs, w1th k,, A2, Ag; and we have SA =0,
while 3f is nearly equal to zero.

In the theory of errors, the following proposition is often useful.
Let y be given by the equation y=f(2,, %, &, ...), Wwhere y is not
capable of direct measurement, while z,, z;, 3, ... can be experimen-
tally observed. The value of y is thus found indirectly. (A case in
point is the determination of the time of flight from the initial and
residual charges on a condenser) Let the errors in the determination

of ay, @, etc. be + dmy, + dm,, ...: the error in y is * dy.
Then
tdy=1% fdx,_af _af
0z, 0x;

The maximum error (m’) in the value of y then arises when the
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maximum errors, m;, Mg, ... arise in a,, &,, ... and when these errors
are all added together: this is obviously the most unfavourable case.

Therefore
! a-f a_‘]i‘
7n__+a—lml+-a 2mz+.... .................. (3)

Generally speaking, the errors are not all in one direction, and some
therefore counterbalance one another. Then the accuracy of the
measurements of @, a;, @, ... is given by the mean quadratic errors,
H1s Mo, M, ... Therefore the mean quadratic error in y is given by

,L'ﬂ—(gﬁ ;Ll) (f )+ ............... (4)

The same is true for the probable and average errors, since w = up4/2,

and E=/.L/\/§-_

The validity of equation (4) can be shown from the following considerations,
¢ is determined from the sum of all the squares of dy; p, is found from the sum
of all the squares of d; and so on. But if the equation for dy is squared, we have

9 i 0
afd ,afaz -~ af dx,af ...
cancel one another, if the number of observations is sufficiently great. If the
equation for (dy)? is written out for all observations, and if all these equations
are added together, we get (4) as the result. A strict proof of the formula (4) is
given by Czuber in his Theory of Probabilities, Leipzig, 1903, No, 126.

since the quantities

In the special case in which y is a linear function of @, 2, @, ..
we have y = a2, + 0,2, + 0325 ... Then
o of

=a;, ~— =0, etc.
axl 1y aw2 23 ]

v

and we therefore have
=+ (Ot 4 oo i e (5)
If y is the algebraic sum of @, #,, @3, ... then
W=tk i } ......... ..(6)
and W= w2+ w? +w32+ """

Let us suppose that a variety of 1ndependent causes contribute to
deflect the projectile: e.g., error of aim, variations in the vibration of
the bore, small changes in the velocity of the wind. Then the resultant
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mean deflection will be the square root of the sum of the squares of
~ the mean separate deflections. It is not equal to the sum of the
separate deflections, since they partially counterbalance one another.
In ballistics, the last equation (6) is generally called Didion’s law.
Let us use equation (5) in conjunction with (2). The true errors,
Ju f;, ... have the same accuracy, given by the mean quadratic crror
i le, = py=p;=...=pu. The coefficients «,, a,, ¢s, ... are here
n—1 1 1

, ==, —=,...; the mean quadratic error in X is ', and 1s found
n n' n :

by the same law as that for u. Therefore we have p’'= \/ 2—%?—,2: and

#”=E(:2)=(n;1 )*+(_%)’+( 5)’4....

therefore

: “n 3%
p.= nTll.L= n—l' .................. (7)

According to this rule, the mean quadratic error p (and therefore
w), is found by taking the apparent or probable deviations, A;, Az, Ay, ...
as the basis of the calculations, instead of the arithmetic mean. This
is the method which is always used in ballistics.

Further the average deflection, E, is not found from the equation

I .
E= # , but more accurately from the equation

2
T Wnn-1)

For if E'—E( ) , then p' = F' \/2 just as previously we had

™

p=E, /7.

E_ﬁ_«/ n
El—[.lv’— n_l'

Therefore
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Consequently
Eep /P 20 [
n—1 n n—1
1))
Vn(n—1)

’ n ’
Also w=w, \/ — where w, corresponds to w, for the apparent
deflections.

The accuracy of the values for u, Z, and w is given by the probable limits,
They are here stated without proof, in accordance with Helmert’s methods.

The Pl'Obable Ilml ts fOI 1 are
) /J7—l—

- n—1
(22 )

n is the number of experiments: p=0-476936: for the value of I, see Vol. 1v,
Table No. 18: or approximately for values of » greater than 10 the limits are

PP p
+
n—l[l_wn—ljl'

2 —
P2 1i~/2p

Probable limits of F are

. SA _ . - .
Tt (1% (D i

or approximately for large values of #,
2 14 Jw -2) .
Ne@m—1) =P n—l}’

) \/——n . 0'7867}
b n—l{ N
The terms, which follow the + sign, if multiplied by 100, give the probable
accuracy, expressed as a percentage.

The values of =A%, and p can be obtained from the results of observation, e.g.,
from the values of £;, £;,...; as can be seen from the first part of § 61, we have

()= (8- (28],

which is Jordan’s formula, The differences of these direct observations, d, are
discussed in § 62, and

=)

probable limits of », are

5 (W) =3 (@9 —1 (s,

which is Wellisch’s formula. Kozak’s method is referred to in the notes to § 58 to
§70: it depends on the so-called observation-residues.
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§ 62. Successive Differences.

For the purposes of ballistics, there is another measure of accuracy,
which is very important. One starts from the original observations:
for instance, when it is a question of the deviation of the projectiles
to right and left, the distances (£, &, &, ...) of the scparate points of
impact from the left edge of the target form the starting points: or
when it is a case of deviation in respect of range, we start from the
ranges, which are observed. Thus starting from £, L5, &, ... wetake

the successive differences, £ - §,=d,, & — £ =d,, etc., without any
regard to their signs, and reckon the average va.lue of these differences,
the number of which is s. Thus Ed—ﬁ If the observations are

taken in their normal order, we have s=n—1, and we have n—1
independent differences from n observations. If nothing is known as to
n(n—1)

the order of the observations, then they are all used, and s= 5

Then the average deviation X is calculated from the equation

1 2(d)_ Zq
E—W—s— IV AR veeei(9)
..(d)

Therefore w = Epa/m = 0-5978 ——

In order to explain this, let us start with equation (5), and suppose that y is
a linear function of two other quantities, x, and 2,. Therefore y=qa,z, +a,z,.
Let the mean quadratic error for z; be g, and for 25 be p;. (Or the average error
may be £ for ; and £, for #;.) Then the mean quadratic error for y will be p',
or the average error will be £, where p'?=a,2u,2 4 aps?, or E'? =alE?+atER,

since E=p \/ % In the present case, it is a question of finding the differences

dy=§ — £, ete. Let all the points of impact be measured with equal accuracy
from the left edge of the disc. Therefore E == £,=ZF. And in this case, a¢;=1,
and a;= -~ 1. The average distance is E’=(%‘r), and therefore

2D JEFEFR B =VIE, or 8=,

According to Helmert the accuracy is given by the following probable limits, viz.

- F(n—2)—4n+6]
z(d){lh/2 \/3(n+1)+2~f5(n 2) 4n+6I,

n{n-1)

where z is the number of observations and p=0-4769.
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If 7 =10, then the probable deviation, 1, (or 2u, the so-called 50 per cent zone),
is found from the mean quadratic deviation, p, or from the average value of K|
or from the differences in the observations, to degrees of accuracy which are in
the following respective proportions, viz., 0°159; 0:170; 0-163. Thus the method
of determining from g is the most accurate, then that from (d), and finally that

from the average deviation Z.

The advantage of calculating the accuracy from the successive
differences lies not only in the greater exactness of the results, as
compared with the calculation from the average deviation, and in the
greater ease with which the results can be obtained. The main point
is that there are fewer cases in which it fails to give results. For
instance, it might happen that during the tests some variable dis-
turbance is at work, causing the mean point of impact to alter its
position, or effecting a continuous change of the arithmetic mean.
Thus the temperature might rise, or the bore become heated, or the
velocity of the wind might change. In such a case the method of
calculating from the arithmetic mean would give no results, and
unless the whole series of observations is to be abandoned, recourse
must be had to the method of successive differences. Vallier has
pointed out that the calculation of the probable deviation from the
successive differences is independent of any change in position of the
mean point of impact. R. von Eberhard has given the general proof
of this fact.

It is possible to determine whether there is any disturbing cause
in a series of observations by the following process. The probable
error is determined both from the average deviation and by the method
of successive differences. The two values of w, found by these methods,

must be approximately in agreement: that is, the ratio of «/( )

2s
_i_()"_—)— must be nearly equal to unity. If the value of this ratio
Vo (n—1)

differs by more than 20 per cent from unity, ie., if the value does
not lie between 0'8 and 12, then it is probable that the mean point
of impact changes its position, and that there is some disturbing cause
at work.

By the method of successive differences we calculate A from the
deviations with respect to the arithmetic mean. But if the arithmetic
mean is determined from a few observations, there is still a considerable
likelihood of error: the question is as to the probable accuracy of the
mean value.
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Suppose the quantities &, &, &, ... arc observed direetly, and the
E+&it...
" .

mean is £,=

The quantitics £, &, &, ... are all supposed to be measured with
the same accuracy, with the mean quadratic error .
If equation (5) is applied to this case, and it is noticed that

&= % & +71_z £+ ..., 50 that here g, =a,=... = =, then the mean quad-

ratic error of &, is given by

1 \? 1\ _,li’
ﬂ[’:(ap) +(—;l.) +...—n,

n

and so the mean quadratic error M of the arithmetic mean is

11[=~/—’;. ..... e ——— (10)

Therefore also the probable error is W=—3%, supposing p and w

to be the corresponding errors of the individual measurements.
While x4 and w are independent of the number of observations, if
these are numerous enough for the fundamental laws of the theory
of probability to be applied, M and 4V diminish as the reciprocal of
the square root of the number of observations, and for n =1, 2, 10, 20,

100, ..., the values of% are respectively 1, 071, 0:82, 0:22, 0-1, ....
n

The accuracy of the arithmetic mean increases at first very rapidly
with n, but later the gain is slower. On that ground, not more than
10 to 15 observations are employed.

Ezamples. 1. In the Ballistic Laboratory a measurement of the same time
interval ¢ by means of the Condenser-Chronoscope was made 10 times,

7,
=2 (tog sin }ap—log sin }a),

. is the resistance of the circuit of discharge, log W=2'69110; C is the capacity
of the condenser, log C'=069897; a, is the galvanometer deviation before the
experiment, a after the breaking of both eircuits.

In 10 measurements the mean of sin 3a, was found to be 0039886, with a mean

© (8)
quadratic error u ?=008546; and the mean of sin 4a=001214, and p;?=004423.
The mean quadratic error p for a single determination of the time interval ¢;

as given by (4), is
y (4), e ( o
#7108 (smgao sin i»a) )

Therefore u=0'0000014 sec, or w=000000093 sec.
c. 25
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386 Accidental deviation of shells [cH. X1

The same value of ¢ must be obtained from the separate measurements of z.

The mean of the 10 experiments was found to give =0'0002975; and from
the differences of the single calculated values of ¢ from the mean value, the value
of p was obtained =0-0000014 sec or 0'47 °/, of the measured time ¢, which was
about the time of flight of the .S bullet over a distance of 25 cm.

2. A time-difference of about 0'016 second was measured repeatedly by the
Boulengé apparatus. The reading of the time-measuring rod was made by vernier
and magnifying glass, so that it could be obtained within 0-01 mm.

The greatest possible ‘error of reading of the disjunction-mark amounted to
005 mm, corresponding to a time-difference of +0000034 sec. In the measure-
ment of the time-mark the error of reading might reach a maximum of 0-05 mm,
corresponding to a time-difference of +0-000031 sec.

Thus the greatest possible error in the measurement of the time will be reached
when both parts of the errors add together ; and then it is

40000034 -+ 0-000031 =0-000065 sec:
while the mean quadratic error gave 0000057 sec.

3. The resultant dispersion in range a in shrapnel fire is a combination of the
longitudinal dispersion b due to the burst and of the longitudinal dispersion ¢ of
the points of impact. Then if @, b, ¢ represent 50 °/, zones, a=/(b?+¢?).

§ 63. Recapitulation of results.

If n single observations are carried out, the arithmetic mean of the
observations is taken, and the deviation of each individual observation
from this mean is also found.

Denote these deviations, regardless of sign, by A;, Ag, A, ...

(a) The so-called average deviation, which is called the mean
deviation in the German Army, is

poMFA N
Vin.a—=1) '

(b) The so-called mean quadratic deviation of a single observation is

_\/x12+>»;+...
- n—1 )

(¢) In the case where the observations have been recorded in
their correct order, the successive differences are written down; there
are n—1 of these differences, denoted in order by d,, d,, ds, ...
irrespective of sign; denote their arithmetic mean by

D=dl+d2+d3+...-
n—1

(d) Then the probable or 50 °/_ deviation w of a single observation
is given '

1most exactly by w=067454,
less exactly by w=0-5978D,
still less accurately by w = 0'8453E.
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(¢) The probable or 50°/, zone s, (called the meun zone in the
German Army) is the double of w, and is given

most exactly by 85 =1'3490p,

less exactly by 85 =1'1956D,

still less accurately by s, = 16906 E,
(f) The probable error of the arithmetic mean is

w
W= 7

Erample. The velocity vy was measured by a Boulengé apparatus over a
measured distance of 50 cm from the muzzle, for 10 shots.

(@) Average deviation

b
E=—==+23 mjsec= +027°/,.
~/90 -_— / -— /o
(b) Mean quadratic deviation
61.24 o
K= A m--_ﬁ-26m/sec= +3°,.
Difference 3
. Square Buccessive
Number Velocity from the of di%ierence differences
of test mean value
vo5 (m/sec) A A2 d
1 8630 37 1369 51
2 8579 14 196 15
3 8594 01 001 .
4 8572 21 441 o1
5 8556°1 4°2 17-64 95
6 8576 17 2-89
39
7 8615 22 484 06
8 8623 30 900 08
9 8615 22 ’ 484 5
10 8579 14 1:96
mean sum sum sum
=859'3 =920 =61-24 =225
5
() D=20g51,

(d) 50°/, deviation w
from p, w=06745%26 =17 m/sec.
» D, w=05978x251=1% ,,
» By, w=08453%x23 =19 ,, .
25—2
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388 Accidental deviation of shells [cn. x1

(e) 50°/, deviation
from p, $5p=35 m/sec.
w Dy 8=30
” E’ 30=39 ,

§ 64. Calculation of the arithmetic mean in the case
of grouped observations.

Suppose for example a definite time-interval is measured by several
Boulengé instruments 4, B, C, ..., of different accuracies; 10 times
by 4,15 times by B, 9 times by C, ... ; and suppose the mean values
obtained by each apparatus are @, @3, s, ... .

Then it is evident from the preceding that it is not permissible to

T+ 2+

take the most likely value of « as ~, because the accuracy

%
of the single mean values ,, #;, #; is not the same, in consequence of
differences in the apparatus, and also in the number of experiments.
The individual arithmetic means @, #,, s, ... must be multiplied
by certain factors py, p,, ps, ..., before being added, and then divided
by the sum of these factors; so that
Pt Pt ...
B Ditpt...
The same holds for any ballistic measurement whatever, such as gas
pressure, velocity, mean point of impact on the target, and so forth;
and the question arises of determining the values of py, pa, ps, ....
(a) The accuracy of each measurement being assumed to be the
same in all groups, with a mean quadratic error u for each measurement,
suppose only the number n;, n,, 75, ... of experiments to be different,

from which the mean values z,, =,, 3, ... are determined.
Moreover suppose all the measurements independent of each other.

In this case the mean z of the whole is

P ki LS )
N+ ng+ ...
Therefore the factors are p, =n,;, p.=1n,, ....
7

The mean quadratic error for « is TpimT ) .

(b) Suppose the number of experiments n,, ny, 7, ... in-each group
to be the same, n, = n,= ..., but the accuracies to be different ; so that
p is the mean quadratic error in the first group, u, in the second, and
so on, ‘ :
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Then the mean z of the whole is to be taken as

Pt et -
Dot Pak .. e

1 1
wherepl——,p2 e EERE
3

The same procedure arises when @, 4;, 7, ... are not separate mean
values, but the results of individual observations made with different
degrees of accuracy. Then the mean quadratic error x for « is given by

1 1 1
—_— + —
L N
or if " denotes the factor p of the mean 2, then p=p,+ p,+....

(¢) Suppose the accuracy in the various groups to be different, with
mean quadratic error p, gz, 4s,... , as well as the number of experiments
Ny, Ny, N3, ..., from which the means z,, z,, a3, ... are determined, then

in (D), g, pra, s, ... must be replaced by v, \/ .,and the mean #

is given by
_ Pt otk )
pl+p2+ ) *sesercesesrecsscsena
i My
and p1=;;§, pz:ﬁ?’

Proof of these propositions.

() Suppose x; to be the mean of two equally accurate observations y, and y,,
50 that y,4y,=22;; suppose moreover z, to be the mean of three observations,
equally accurate with y; and ., so that y3+y4+y;=38z,; then the resultant mean

x=3’1+3/2+.'y‘_3+3’4+% _2n+32,

[ 243 ?

and the proposition is evident. Then if p is the constant mean error of a single
measurement, the error of the resultant mean z is p divided by the square root of

the number of measurements, as in § 63; so that here it

=B
V5 J(pitp)’

(5) Given the three means z,, x;, 23, derived from n measurements; let z; be
found with the mean error y; of a single measurement, z, with p,, and #; with p;.

The mean error of the mean z, is then:’,% .
On the other hand, suppose the observations, as in (a), to be made with equal
accuracy and the same mean error u, and suppose the number of observations in

the groups to be different, p, for z1, p, for 2;, and so on.
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390 Accidental deviation of shells [cH. x1

Then according to () &=(p,#+p2Za+ psxs): (P1+p2+ps). The mean error

2
of @, in this case is clearly :/%, of z, is J’;o ; 50 that £ T = \%—, or ;v,—-—"2 ;
1 2 By

2
p2=n—"'2, ...; and thus
Ko

nu?  np? npl np?  nu?  nu?
x=(i2x,+—"nxz+—"§xa):(i2+i2+—"§)
K3 [ Mo A3

1 1
—3 2t Byt &
#12 ! #22 2 ,us2 3
1 1 1
—5+ — +—
HlZ F22 P32

which is the same expression as given above.

Since n does not oceur here, it is evident that the result holds for =1, and
for the case where 2y, 25, #3,... are not mean values, but individual cases, measured
with the various accuracies expressed by 1, pg,y p3s ...

Let us imagine again the observation 3, to be made with mean error p,, and
23 with pg, and their combined mean 2’ to be found, as shown by the brackets in
the equation. Let this mean have the error p’ and the factor p".

Then the resultant mean is

1 1

S a—a
_phhn?
v==T7
—+-=
pt "
so that
1 1 1 1 1 1
= x+ 5 %3, and p'=p,+ I = —
e A 3y '=pz+ps O e #22+F32’
1
v= Q“*H)( * )
This gives equation (4).
B . The proposition may be compared with
. s an analogy in Mechanics.

The equation

: 2=(p1 21+ Py %y +p3s) : (D1 Patpa)
: is similar to the equation of moments for
; the calculation of the abscissa of the centre
P, : : of gravity § of three particles 4, B, C with
: E Ps abscissae 2y, %2, 3, and weights 9, 02, 23
' which may be concentrated as a single weight
' P1+p3+ps at the centre of gravity S.
; Ezample. The same time-element of
PrPyep, about 0016 second was measured 50 times
by six different Chronographs ; and the mean

Digitized by Microsoft ®



§65] Accidental deviation of shells 391

value and the mean quadratic error p with respect to the mean were measured
in each group. It was found that in the

Condenser chronograph, the mean value of x; =0016315, p;, =0-000016;

Spark chronograph, " " 2o m0010480, p, =0000128;
Tuning fork chronograph, ,, » x3 =0016552, pu; =0000134;
Boulengé apparatus 4 » » & =0016339, u' =0-000055;
" N B N , & =0016398, 4" =0-000057;
" ” c »  2"=0016575, y"=0000143,

As the three Boulengé apparatus are not essentially different, they are treated
as a single apparatus, so that finally the resultant mean is to be calculated from
four groups only.

The mean z, of 2/, 2”, 2" and the value of its p; are thus first to be calculated.

According to the above

0016339 0-016398 0016575
(0000055)2 (0000057 )2 " (0-000143)?
1 1
m_oooo 5y (o—-— 0000572 * (0000143)2
1
,-‘T-=u-7-2+ "2+ ,”2, p4—0000()381 sec.

Then to calculate the resultant mean 2 with the use of 2,=0016382, and
p3=0'0000381, the mean of the six groups would be found, treating the three
Boulengés as separate instruments; but they are to be treated as a single
apparatus, with p,=00000381 x /3 =0'000066 sec.

The resultant mean is therefore

0016315 0016480 . 0°016552 +0'016382
i@ 3 2 S62
2= 16 128 134 66 =001632 sec.

62+ 82+ 42+662

=0016382 sec;

(see Vol. 1v, § 144).

§ 65. Investigation of a series of observations. Axes of
symmetry of a target-diagram.

In a definite series of ballistic observations, the deviations A, A,,
Ag,... from the mean value must be divided into groups, in order to see
how many lie, for instance, between 0 and 2 cm, between 2 and 4, and so
on; and then u or w must be calculated ; thence we know the number
that should lie in each interval, according to the law of Probable Errors.

If the two error-curves are in suﬂ3c1ent agreement, it can be in-
ferred that no disturbance is present.

Usually however the number of experiments is too small for this
procedure to be possible; in such a case the following criterion is
generally employed.
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392 Accidental deviation of shells [cH. xI

(a) After the numbers of the experiments have been recorded in
the order in which the tests were made, and the sequence of the
different deviations has been determined, the number of positive and
negative deviations should prove nearly equal, as well as the number
of sequences of change of sign, + — or —+, and ++, — —.

(b) Itis more important that the calculation of the probable error

w from the mean quadratic u, average I, and successive differences d
should give about the same value from the equations

2
Vn.n—-1)

If this is not the case, and if the two last determinations of w are
so related that their ratio differs from 1 by more than 20 °/_, the sus-
picion arises that a disturbing cause is present.

As stated already, w should be determined in this case from the

Sid|
8

reject the whole series of observations.

—059782L£Z—|.

w= 06745\/———08453

successive differences, by w=05978 , unless it is preferred to

(¢) The question is of particular importance as to whether an
observation with a numerical value of A of extraordinary amount
should be rejected.

Gauss’s law only excludes deviations of infinite amount, and it is
therefore to be expected that in practice certain arbitrary limitations
will be necessary. Many men object to any system which allows an
observation to be rejected for any cause. Airy, Bessel, and Faye took
this view. Others allow the exclusion of a reading if there was any-
thing suspicious in connection with the circumstances under which
the observation was taken. But in connection with firing tests, it

seems necessary to reserve the right to exclude any figure which

deviates from the mean by an excessive amount.
Many rules have been proposed; in particular by Bertrand, B.
Pierce (with Tables by Gould and Chauvenet),

greatest error occurring, or 2 the extreme
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dispersion. Then the probability that a shot falls in the region I, 1, is
given by

L [ e g 2 [ dr=g 31)=  (os7092) = (),

NS gamar Jeeo
where 4 is found in Vol. 1v, Table 15.

Thus 1=+ (%) is the probability that a shot falls outside these
limits, that is in the shaded regions II, II; for n shots this is
n [1 -—\p(i‘—u[)] . Then if the condition is assumed that this last ex-

pression = 1, the equation n [1 Y (M):I =1 determines the maximum

deviation or error.

To obtain a law, Chauvenet argues as follows. If this number is
less than 4, an error of magnitude A is on the whole unlikely.

The equation

)z[l—\p(]g):I:%,or \#(%):2—7;;—1 ......... 1)

decides the limits.
Suppose for example the number of trials was 10, and the 50 °/,
zone 2w =14 cm, w=2, then M is determined from

. v (% o) = 2———028 1 _09s;
according to Table 15, %[= 292, M =584 cm; this means that if

among the deviations of a single observation from the arithmetic mean
an error is found greater than 5:84 cm, this shot must be rejected.
Vallier replaces the equation (1) by

\F(@):n?—l, ........................ )

w n?

and agrees with Chauvenet only for n =4 and 5. He rejects less than
Chauvenet when n has higher values than 6.
Mazzuoli has lately employed the equation

qr(ﬂ—l)="'1, ........................... (3)

w n

for the direct construction of rules of rejection, and says that it gives
good results.
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B. Pierce, on the basis of theoretical considerations, arrives at rules
very similar to those of Chauvenet, but they differ as to whether
1, or 2, or 3,... extreme deviations are to be excluded.

The theoretical discussions of Stone lead to the conclusion that
different rules must hold, according to the nature of the observations
and the observer in question.

Heydenreich treats a shot as rejected when its deviation is greater
than would be expected once in 2 (n — 1) shots; the condition is then

2 (n—1) [1_«1,(%[)]:1, «p(%[):g%:—g ...... (4)

The different rules are collected together in the following. An
observation is rejected when the deviation from the arithmetic mean

is greater than « times the probable error w, where w = half the
50°/, zone.

NWIDEE | 1. Chauvenet (fofi P ierton)| 8 Vallier 4. Heydenreich| 5. Mazzuoli|
n K X K X K
3 — 180 — —_ 146
4 2-27 2-05 ag in (227 -_ 173
5 243 294 1 {243 976 191
6 256 2:39 325 291 205
7 266 251 345 303 218
8 277 261 360 312 228
9 283 270 369 320 236
10 992 278 384 327 244
12 302 | 292 400 337 958
20 333 397 449 364 291

These figures differ very materially.

The numbers of Chauvenet appear to the author to be the best,
but it would be better to test the figures by comparing the results
obtained from a variety of ballistical tests. In this way it would be
possible to arrive at some sort of final judgment. See also § 66.

Numerical example. Measurement of the velocity of a gun, at 40 m from the
muzzle. Twelve observations were made.
Mean quadratic error of a single measurement

G 1765 . o 04769
VA \/T—l“l 26=1126 (Ii J11
=126+018=108 to 1'44

= about 1'3 m/sec, or 0-29°/, of ».

Digitized by Microsoft ®



§65] Accidental deviation of shells 395

Deviation Square Buccessive
v from mean of deviations differences
m/sec A A2 d
4391 -28 7'84 38
4429 +10 10 o
442°2 +0°3 009 0,'1"
4423 404 016 0-2
442-1 +02 004 03
442-4 +0°5 025 09
4415 - 04 016 o
442-2 +0-3 0-09 07
4415 -04 016 05
4420 +0°1 0-01 9.9
4442 +2-3 529 39
4403 -16 2-56
Mean v=441-9 Z|A|=103 EA2=17'65 Z|d|=14'0
Mean quadratic error of the result, i.e., of the mean »,
o 126 —008L° of &
.ﬁ[—Jﬂ—le-—O 36 m/sec=0081"°/, of =.
Average error of a single measurement
Al 108
E=~/(n.n_l)_~/(ll.12)—089m/sec.
24| _140_ 1976, osor8i%=07s.
8 11 ]
So that,
as derived from py, w=06740u=085;
» » E, w=08453E=0'75;
o A osors2l Lo,
8 3

w from (d) 076
wfrom £ ~ 075
and is between 0'8 and 1:2 ; and therefore there is no cause for assuming that any
disturbing cause is at work. .

Moreover there are five sequences of sign, and 6 changes in the values of A.
On the other hand there are 8 positive values of A against 4 negative, and
5 positive in immediate succession-— (+1°0, +0°3, 404, 402, +05).- This arises
because the first measurement 439'1 was rather small compared with the rest.
As this often occurs, many are in the habit of omitting this first measurement on
principle. But the question arises whether 439-1 is to be rejected or not. Since
n=12, w=085, from the determination of w from g, and this shot according to
Chauvenet should be rejected ; because

2:8>302 x 0-85 or >2-56.

The ratio of the last two determinations, is very nearly 1,
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According to Pierce this shot is to be rejected, since
2:8>29x085>248.
According to Vallier, the shot is not to be excluded, since
2-8 is not>400 x 085> 34,
According to Heydenreich this shot is just excluded, since
2:8=~337 x 0'85.
According to Mazzuoli, the shot should be rejected, since
2:8>2'58 x 0-85>2-2.
On general grounds, the shot in question should obviously be rejected.

The calculations should then be repeated, and based on the other 11 measure-
ments. :

Remark. H. Rohne employs the equation n|:1—\lr (‘Zﬂ—[):,:I to obtain the

50°/_ zone from the total dispersion 24/. By a combination of theory and experi-
ment he obtains the result: In 5, 10, 15, 20, 25, 30, 40, 50 shots the ratio of the i
total dispersion to the 50 °/, zone was respectively 195, 240, 2-59, 2-76, 290, 302,
3112, 3-20. :

Another method has been investigated by H. Rohne ; he obtains the 50 °/, zone
by excluding the less accurate half of the shots. This has been employed also by
A. v. Burgsdorff and others.

§ 66. The axes of the target-diagram.

When the distribution of errors with respect to the mean value is
treated in more than one dimension, as for instance in the grouping
of the hits in the plane of a vertical target about the mean point of
impact, or in the distribution of the bursts in space with respect to
the mean point of burst, the question must be considered whether the
causes of deviation in relation to the coordinate axes are independent *
of one another or not. '

For the sake of simplicity the preceding treatment was connected |
with the distribution of the hits on a vertical target, and moreover
the deviations along the horizontal axis Oz were the only ones that
were considered. ‘ -

In a similar manner the deviations may be considered, in the -
direction of the vertical axis.

Suppoée the deviations in the x direction to be denoted by z, @,
&,...,and in the y direction by ¥,, ¥s, %, ..., the mean quadratic error in §

: sy
g

But the assumption here is that the errors in the directions of the

the @ direction is y, = «/ 'rTE—-i’ and in the ¥ direction is u,=
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z axis and of the y axis may be calculated independently; and this is
the case when the target-diagram is symmetrical in relation to both
axes.

When this is the case, in a sufficiently large number of shots
there will always be points (+4, +5), (=4, +5), (+4, —5), and
(=4, = 5). In consequence of this symmetry Zay=0.

Conversely, the numerical value of 2zy will determine whether
symmetry exists with respect to a system of coordinate axes, chosen
arbitrarily. If the value of Zzy is distinctly different from zero, then

in strictness the coordinate system must be turned so as to make the
new coordinate system of u and v possess this symmetry, and so have
Suy=0.

The question as to the angle «, through which the (2y) coordinate
system must be turned, has now to be considered.

The considerations are the same as those arising in mechanics
and analytical geometry, when it is a question of placing the coordi-
nate axes along the principal axes of a body, or in the direction of the
axes of a conic section. .

With the horizontal direction for 2 and the vertical for y, let
Sxt=A, Ey"--B, Szy=0.

If we turn the axes through the angle 8,

u=xcosf+ysinf, v=—axsin +ycosé,

wy=—sin g cos 8 (* — 4*) + (cés2 0 —sin?6) zy,

and
Suv=—1% (4 — B)sin 26 + ( cos 26.
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When the u, v axes are the axes of symmetry, Suv = 0; the value

of 6 determined from this condition is denoted by «, so that
20

A-B’

After the coordinate system has been turned through the angle «,
all deviations are referred to the new (u, v) axes.

But it is not necessary to repeat the calculations when it is only
required to obtain the mean quadratic errors x4’ and p” with respect to
the new axes; because

0=—3(A—B)sin2a+ Ccos2a, tan2a=

w?=a? cos® a + y*sin® a + oy sin 2a,
v =a?sin’a + y* cos® o« — zy sin 2a;
Sut=A cos®a+ Bsin*a+ C'sin 2a,
Sv*= A sin’a + Bcos*a — ('sin 2q,
so that since u' = 7%11 , and u'= n_E_’e% , their values are ob-
tained immediately from those of 4, B, C, a.
The values of &’ and x” are now a maximum or minimum, a rela-
tion equally useful for the determination of tan 2ea. »
Recapitulation. Consider the deviations with respect to horizontal
and vertical axes, drawn through the point of mean impact, and calcu-
late Za*= A4, 2y*=B, Zay=C.
If C is distinetly different from zero, this shows that the axes of |
symmetry are inclined to the horizontal at an angle given by
20
A-B’
The mean quadratic deviations, x’ and ", with respect to the true
axes are calculated from
(n—1)p'*=A cos’a+ Bsin*a + Csin 24,
(n—1) u"?=Asin’a+ B cos’a— Csin 2a.

tan 2a =

Examples. Target practice of a rifle, 6 mm calibre, at a range of 1500 m.

The 20 hits were measured from the vertical left-hand edge of the target to
the right (+§), and from the horizontal lower edge upward (+7). Mean point of
impact, &my. The deviations with respect to this were denoted by +2, right and
left, and +y, up and down.

£=5015 645 658 622 627 592 696 572 615 596 733 662
n=218 265 274 281 293 304 309 316 352 352 374 371
£=591 565 730 654 626 604 672 726 cm; mean £,=63505cm.
n=375 459 526 541 573 583 636 665 cm; mean p,=403"75 cm.
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Thence, in the horizontal direction | in the vertical direction
= |x|=921, 22?=63969 2 |y|=23155, Zy?=352034
average deviation .
E\=472 cm {L"lm cm
probable deviation we= 92 cm
wy =39 cm
mean quadratic deviation
=58 cm pe=136cm
probable error
10, =40 cm w, =92 cm
probable error of the mean
Wi=9cm W;=21cm
2 =60820,
aC 2 x 60820 o am
tan2a=m_63969_35632, a=-11° 26"-8.
For the symmetrical axes, (¥, v)
Sut=51655 2¥=2364354
mean quadratic error 4'=52 cm u'=138cm
probable error #'=35 cm w’'=93 cm

In addition for 100 shots from a 7-65mm rifle at a vertical target at a range
. of 250 m, it was found that a=+7° 32,

Bertrand investigated 1000 rifle shots, and found a= —19°47’; Mayevski from
2 series of 44 shots from a 10'5 cm gun, found a= +0° 47",

No laws, connecting the distance of the target with the position
of the axes of symmetry, are known, in spite of the fact that it has
been sometimes stated that the two things are interdependent. But
an investigation of the matter might lead to some useful results.

§ 67. The probability of hitting a given area.

Let us suppose a system of rectangular coordinates to be drawn
on the target, the origin being the

Y

mean point of impact, and let the
axes be arranged symmetrically with A
respect to the target-diagram, as ex- 8 g p .
plained in § 66.

The mean quadratic errors in the
direction of the axes are found from y

2: a? E ?/2 0 z
= —_— = _ x

#a \/n-1"‘2 n—1 X e

thence we find the probable errors, R

w, and w;,, and the widths of the 50 °/,
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400 Accidental deviation of shells [oH. XI

zones given by s, = 2w;, and s,=2w,. The chance of hitting the.
point P is the same as that of hitting an indefinitely small rectangle,
dz, dy, at P. This is naturally infinitesimally small: it may be con-
sidered as the product of two probabilities, which are (1) the chance
of hitting a vertical strip at P of width d=, and (2) the chance of
hitting a horizontal strip at P, of width dy. These chances are
respectively

by gt he gt
'\/—77' dz, and v v dy.
1 04769 1 04769
Now  h=ro="w * B

Then in n shots, the number falling on the elementary rectangle is

h h —2 g~ HhEY) i dy.

Suppose now a rectangular target ABCD is taken, with O at the
centre, breadth 21, height 2/,. Integrating over this rectangle, the
number of hits on the rectangular target is

f= nhlh,Jx-H. j‘y-+la ~hasthee) d dy
v == Jy=—1
A A .
=Mn ;/h—;' " e dgp x % f_z, Rk dy = n¢ (h1 ll) ¢ (hals)
1 L . _ A LY
—nqb( 04769) é (@.04769) — (a)"’(a) ...... 1)

and 4 is given in Vol. 1v, Table 15.
Next suppose a strip AABB is taken, extending indefinitelyfup

Y 4

2l "'/ o
s / -

and down, and containing the origin O, at distances L,, L, from the
sides of the strip ; and suppose the probable lateral error to be w, = w.
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§67] Accidental deviation of shells 401

Of n shots, the number falling in the strip is

2=+ Ly .
t= nif e~"*"dz, where IL=94769 ;
N ) zm -, w
t=ﬂ‘_ jx-+L. e—’l’“"dx+1'.}f fz-+L’e""x’dw;
'\,/'ﬂ' x=0 4/77' 0
!
and since j—w f . "% dp = ¢ (h),
p— 1 Ll -Lz P
we have t=gn [\1’(;) +v¥ (w)] e, )

On the other hand, on a strip as in the figure not containing the
origin O,

_nh (e a1 L, L,
t—,\/ﬂ.fz_”le dm_2n|:\lr(w)—‘lf(5)]. ...(3)
Let side AA in the first strip recede to

infinity, and L, = o, and so also in the second ! ; Z

strip; then : 2
¥(@)-v - . -

w) =Y \®I=4 ' Ly

w 7

;7

Then the probability of making a hit in the
first or second case becomes

{[r @] o Ya-v 2]

The result is therefore as follows: If a straight line G is at a
distance L, from the mean point of impact 0, and if w

. . . . . D
1s the probable error in a direction perpendicular to
the line, then in n shots
%n [1 +r <%>:| fall on same side of G as O;
1 L ¢
3n [1 —r (i)] fall on the opposite side of G to O. s

Recapitulation. (a) The probability of hitting a strip on the
target bounded by two parallel lines, perpendicular or parallel to the
plane of fire, equidistant from the point of mean impact O is

¢ (0'4769 f—i) ........................ @
- (f—l) e (1a)
o] 3 26
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402 Accidental deviation of shells [on. x1
where 27 is the breadth of the strip, and s, that of the 50 °/, zone;

consult Tables 14, 15, Vol. 1v for ¢ and +; ?—l is called the probability
50

factor, and 100+ is the percentage of hits.
(b) The probability of hitting a rectangle, of which O is the centre,is

-y (?Si) " (2?12) e, S (D)

21,, 21, are the lengths of the sides of the rectangle, taken parallel and
perpendicular to the plane of fire; s,, and s, of the 50 °/_ zones parallel
to the sides of the rectangle.

(¢) The probability of hitting an infinite strip with parallel sides,
where O has an unsymmetrical position within the strip, at distances
1, and [, from the sides, is

1 2Ly 1 21, .
5‘1’(3_50) +§¢(S_w). .................. (111)
(d) The probability of hitting the strip outside O, is with the
same notation
1 21, 1 21,
Q\p(g) - Q‘V(g)' ..................... (IV)

(e) Given a line on the target, drawn obliquely to the plane of fire,
at a distance ¢ from O ; the probability that a hit lies on the same side
of the line as O is

%4-%1[;(3—:) ........................ V)

A table for these functions is given by Sabudski and v. Eberhard;
the calculation can also be made from Table 15, Vol. 1v.

(f) So also the probability that the hit is on the side of the line
away from O is
1 1 <g

Ss0

2 2 ) e eerteieereererrnanaes (VD)

The quantities I,1,,,, s, must all be expressed in the same unit.

Ezample 1. A strip on the target stretches in the direction of fire, of breadth
2l=6m ; the breadth of 50 °/, zone is sy=4 m. The gun is aimed at the middle
line of this strip. What is the percentage of hits on the strip?

(@) From Table 14 in Vol. 1v,
2l 6
o=3=1%
so that from (I) the probability required is
¢ (0°4769x 15)=cp (0-7153) =0-688.

Therefore 688 °/, are hits.
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(b) From Table 15, Vol. 1v,
Y (1:5)=0688, and thus 688 °/, are hita.

Fzample 2. A horizontal strip on the target is drawn obliquely to the plane
of fire; the gun is fired at the horizontal middle line of the strip. Given that the
breadth 27 of tho strip is one-third of the 25 °/, error, calculate the percentage of
hits on the strip.

‘Consider another strip with the same middle line but of breadth 2/,;. On this
strip the probability of hitting is 0-25 ; then according to (Ia)

v (QZu)_O 25, and 2:"35=0'472 from Table 15,

850 50
On the other hand 205, =3x 2/, so that 0472 8;p=3 x 2{, or
EZ = 0—472—0 *157;
850 3

and from Table 15, - (0:157)=0082; hence 82 °/, of hits are to be expected.

Ezample 3. The height of a strip, extending right and left, is to be so ad-
Jjusted that when a rifle is fired at the middle line of the strip, 41°/, of the hits
strike the strip, the 50 °/, zone for height being 3-5 m.

Let the height be 27; then (,—32—;) =041, and 31.;=0'80, from Table 15: and
2[=2-8 m.

Example 4. A strip extending indefinitely right and left has a height of 19 m.
The 50 °/, zone for height is 3:5m. The mean point of impact is on the upper
boundary line of the strip. To calculate the percentage of hits on the strip.

In formulae (II1) or (IV), 85=235, [; =0, {;=19; then the percentage of hits is

100x [4,(2"19> O:|=50\[;(1'08)=50x0'5337=27°/°.

Ezxample 5. Firing with a fixed elevation, in 10 shots 7 were observed on the
near side of an upright mound, and consequently were recorded as short. The 50°/,
length zone was given as 20 m. Calculate the probable distance of the mean point
of impact from the mound, and the amount of correction required.

Denote the distance of the mean point from the mound by . This is given by
formula, (V) from the equation

2"’(29 ( ) 04, and ——O 778, from Table 15,

{=78m. Consequeut]y the mean point of impact is about 7°8 m on this side of
the mound; and this is at the same time the most probable correction.

To determme the probable limits of this result for /, the most probable value
being 7'8, or 8 m, the rule of Bayes in § 59 may be used ; and on this it is to be
assumed that it is an even chance that the ratio of the shorts to the number of
all the shots will lie between the limits

2%7(10-7)_
+04/69\/ 5 +00974,

that is between 0-7974 and 0-6026.
26—2
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404 Accidental deviation of shells [cH. X1

The probable limits of {; and I; are calculated from { from the equations

221 2l2 . I
z 2\;,( ) 07974, 2+2\p< ) 06026,

and then
2 _ 195 1,=123
20 1= &S
Z—é?=0-38, 1,=38 m; )

these are the probable limits for the determination of Z.
The probable correction is thence 8 + 4 m, in round numbers; and +4m is the
probable error of the trial.

Ezxample 6. Calculations with percussion and time fuzes.

() Let us suppose that percussion fuzes are used with a given target, the
charge and the angle of elevation being kept constant. Then the final portions
of the trajectories may be considered to be a number of parallel lines, inclined to
the horizontal at an angle w, where o is the acute angle of descent. One of these
is actually the mean trajectory of the group. As in § 63, the deviations from the
mean trajectory, I and &g, can be caleulated from the horizontal target-diagram
for level ground on the muzzle-horizon. Here g is the 50 per cent zone for length,
and is measured on the horizontal line in the plane of fire, while by is the 50 per
cent zone for breadth, and is measured on the horizontal line at right angles to
the plane of fire. It will be seen that bz has the same value for level and for
rising ground, while /5 has obviously a variable value, depending on the angle of
slope. On a vertical target, if A5 is the 50 per cent zone for height, hz=10; tan o.
For a horizontal target, which is at a higher or lower level than the muzzle-horizon,
graphical methods can be employed to obtain the value of I, but the experi-
mental method is better,

(b) With time-fuzes, the same sort of thing takes place. This is the first
reason why shells do not always burst at the same point, even though the fuze-
setting and all the other conditions are the same. Besides the difference in the
trajectories, the variability of the action of the time-fuzes is a second contributing
cause: this is due to various unavoidable differences in the uniformity of the
composition of the fuzes. The position of the point of burst depends partly on
the individual trajectory and partly on the rate of action of the time-fuze. The
“result is that the 50 per cent breadth-zones are the same as for percussion fuzes,
and they need not be further considered.

The 50 per cent height-zones and length-zones are referred to a vertical plane,
containing the mean trajectory, and with time-fuzes the equation /s =1I; tane
does not hold. In this case the values of Az and I mnay be either greater or less
than they would be in the case of simple trajectories: and in practice they are
calculated, independently of one another, from the moments of burst, as found
by experiment. Let us suppose %g to be known, i.e,, the 50 per cent height-zone
of the point of burst: then for a given mean height of burst, H, the probability
w can be calculated from formula (V), and is given by the equation

e=a[+v () )
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Ezample 7. The point of mean impact, O, is at the centre of the rectangle
ABCD, the sides of which represent the 50 °/, zones, and are respectively s, =2w,,
and s;=2w,. This rectangle will therefore receive

25 per cent of the hits, i.e., 50 per cent of 50 per cent. B ‘y A
It is required to construct a rectangle 4, B, C} D, 1T I 1
with sides As; and A8y, so that this rectangle shall B f—A
include half the shots. K | S/

We have N

1.56.4,) 8|, ‘)
A )‘32)_ 1 1 1T ——=2
\k(sl).\p(az 1, whence 4:(7\)-—~/z, /, 5

and A=156. - {p

Lzample 8. The works of Krause, Rohne, Ch. , %

Minarelli-Fitzgerald, Zedlitz, and Heydenreich, to € "1s6%, b,

which reference is made in the notes, may be con-

sulted as to the significance of target-diagrams in firing practice. Thus with
company fire, it is possible to see whether the sighting is correct for the whole
company, or whether it should to some extent be altered. Krause gives a good
deal of information about rifle firing,

Let us take the case of firing at a range of 800 m: the rifle is sighted at the
lower edge of the target A. The mean trajectory is calculated in the usual way.
The ordinates BBy, CC,, ... are given at ranges of 775 m, 750 m, ....

Moreover the 50 °/, height-zones are supposed to be known at the corresponding
ranges 3zp=2w. It is therefore assumed that at the ranges

800 | 825 | 850 [ 875 | 900 | ... | 775 | 750 | 725 | 700 ... m

the mean ordinate y is measured as
y=0]-089 |=185[—290 |- 404 | ... |+0:80 | +152 | 4216 | +2-74 ... m
and that the 50 °/, height-zones are
226 | 236 | 245 | 254 | 264 | ... | 218 ] 2:09 [ 200 | 191 ... m

The probability of hitting the target 44" at 800 m is
170 . a4
z"’(l 13) 0-344=34°,.

The probability of hitting the target B, B’ at 775 m is

080\ . 1, /1"70—-080 .
2"'(109) é‘l’( 109 )“40 lor
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The probability of hitting the target C,¢” at 750 m is

152\ , 1, /170-1'52 oo
2"’(1045) §‘I’< 1046 >=382/°'

The probability of hitting the target My M’ at 825 m is

0894170 1 0-89 mo
2‘1’( 118 ) 2"’(118) 277,
and so on,

Thus for the ranges
800 | 825 | 850 |875 | 900 |925|950]...| 775 | 750 | 725 | 700 | 675|650|6251600|575]....
the series of the percentage of hits is as follows:
- 34:4|237]129)54|1:8|0'4|0]...| 40°0|38:2| 300 | 205 | 12:0| 58| 24| 09| 0] ...

If the percentage is set out as a function of the range, we obtain a curve, .
corresponding to the sighting for 800 m.
As for artlllery, the probability that a shot lies on the same side as 0 was |

given as §+§ ¥ 5),

Denote by £, the unknown range of the target from the gun as given in the
range table, a the range at which the firing is to be carried out. These distances as |
well as the distance Z; of the mean point of impact O from the target are to be
measured in a positive direction away from the gun.

Since ¢ - a=1, and ¢ (—y)= —y (+¥), the probability of a short shot is glveu

in all cases by 3 +3+ (T) .

. a . . .
Putting f—u= @, =0 88 £, a, w are all measured in the same unit, viz., the

metre, $+34y (x—a), or F(x~—a), is the probability of a short shot; and con-
sequently F{a~-z) or 1= F(z-a) of a long shot. A table of the function
is given in the works of Sabudski and v. Eberhard, as well as of Kozak.

‘When s=m-n shots have been fired, the probability that in the s shots, m
are short and = long, is given by

[F(z—a)" [F (a= 2)]"

The most probable distance of the target, according to the range table, is that
for which this expression is a maximum; and so 2 is to be calculated from

Flz~ a)=%, as in the previous example 5.

More generally, let s= +n shots be fired with different elevations; let short
shots be observed at the ranges a,, &g, ... ¢, and long shots at ranges by, b, ..4
b,, in a definite order. The unknown range « is then obtained according to Mangon
by the following procedure. The probability of this event is

n=F(5—ay) F(#—a5) ... F(@=ayp) F (by=2) F(by—2) ... F(by—2). ...(a)

By logarithmic differentiation and equating to zero, the condition of a maxi
mum is obtained, and thence the most probable range .
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The condition will be
Je—a)t.+ f@—dn) = fl=2)= .= f(ba—2)m=0, .........(b)
where f(y) denotes 1;: ((_15/))’ which is found in the tables of Sabudski and Kozik.
This equation (b) is to be solved by trial.

For example in shooting with a gun the following observations were inade, as
given by Sabudski and v. Eberhard. At an elevation of 50 min on the sight, corre-
sponding to the range A,, a — was obtained; with 51 mm at A, +, -, —; with
52 mm at A, +, +; (a long shot is denoted by +, short by - ); 1 mm on the sight
alters the range about 26 m, and the probable error in range w=94 m. Required
the most probable range of the target.

Condition (b) leads here to

S@—A)42f (2 - dg)=f(da—2)=2f (d3-2)=0. .eeverererns (c)
To solve this equation, x=4, is first tried ; and then the left-hand side of (¢) is
. S (43— 4)+27(0) - f(0) - 2f (A5 — 43)=0.

The range difference 4, — d; corresponds to the difference of 51 —50mm; but
since 1 mm on the sight alters the range 26 m,
Ay—A4,=(51-50)26 m=2"77 u.,
So also 43— A,=2-77; and thus f(277)4 2/ (0)—f(0)—2f(2:77) is obtained.
From the table, the left-hand side is thus
011-2x1'18-118-2%x0'11= +107,
which is positive. .

Calculating again 2 as the range corresponding to the elevation 51:36 mm, the
left-hand side works out = —126; and finally —0-21 for 512 mm. Consequently
the most probable elevation for the range is between 51 and 51'2 rom, and nearer
to 51-2.

This method of Mangon, first employed in Germany by H. Rohne, has been
extended by him to the case where in one shot or in several the distance of the
point of impact from the target is to be measured.

Concerning this and other details, see Ritter v. Eberhard’s German translation
of N. Sabudski’s work, in which the questions are treated theoretically.

§ 68. Probability of hitting a given circular area.

Suppose a circle of radius R to be described on a vertical target;
the gun is fired at the centre O so that O is the centre of mean
impact; and the zones in the plane of the target are assumed to be
the same in all directions about O.

About a point P let a small sector df be drawn with central
angle d¢, and bounded by a thin ring of inner radius r and outer
r+dr.
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On Gauss’s Law the probability of hitting df is a?e=*""*df, where
a and b are two constants, to be determined later, and df = rd¢dr.

Integrate with respect to ¢ from O to 27; then out of n shots,
2nmate=¥"rdr will fall on the thin ring.
Thus the number of hits in the complete circle. of radius R is

=R 2
t= 2n7ra’f;=0 e v rdr = nmr l% (1—-e®8 . ... 1)

The constant a is then determined from the condition that the
area of an infinite circle is certain to be struck, and then ¢=n,

.o b
for r=1c0; this gives o = —.

N

The constant b determines the measure for radial deviations,
reckoned from O,

Of these radial errors, denote the mean quadratic error by u,, the
average error by E,, the probable or 50 °/, error (half the 50 °/, zone)
by w, or Ry,

The relations between these errors are different from those given
previously with respect to parallel deviations.

(¢) Mean quadratic radial error y,.

Denoting the single radial errors of the shots by e, ¢, ¢, ..., then
according to the definition,

_\/ef+eg”+..._ e
Hor = n n

Therefore nu,?=3e=2Z (r* times the number of hits made on
the thin ring between radii » and » + dr) == (* 2nmwa?e™¥*"*rdr), the
sum being taken over the whole plane; so that

2 e 4]
np,t = 2nr b [ e O3y

Jr=0
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and substituting 5r? = ¢, and by partial integration, we get

1 1
My = IT’ y l) = i [Tr ) sesasssecssesssrrsses (2)
and thus from (1), the number of hits
»

t=n(1—e_ﬁ .

Thus for R=pu,, t=n (1 — —) 0631n or 63 °/, of the shots.

When the mean quadratic errors u, and g, in the direction of
the two axes of symmetry # and y are known, u,*=u,*+ u?, since
r=g*+ 17, and Zr*=Z2a*+ Zg*; and if p, = p, = p, then p, = p /2.

(b) Probable radial error or 50 °f, zone w, or Ry,
Here R, is the radius of the circle round O, which contams half
the shots, so that ¢=13n; and

Ryl
i=1—¢ ", Ry=w,=pu(log,2)=0832554,. ...... 3)
_Rlog2 R? R2

t=n(l—¢ ™ )=n[l— (182" = n[1—(05)"].

(c¢) Average radial error %,.
This is the arithmetic mean of all the absolute values of the radial
errors.

s‘ .
E. = %G-, nk, =2 (r times the number of deviations of magnitude

7), extended over the whole area, assuming that Gauss’s Law can hold
for deviations of unlimited extent; so that

-
nE, =3 (rna?e V' 2rdr) = 2nwra? / e~ ¥rir2dr;
0
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and putting br =¢, we get
E,= 2”“21)13_[: e~ 2dt = 27a? 513 —'\—/E ,
or, since ¢ = l\/iw s
- poldmoose ®
Therefore

b_l_}_ﬂ_m.
T pu E, 2 weor Ry’

and w, or Ry, = 083255u, = 09395E,, for the radial errors about O ;

compared with the previous w = 06745y = 0-8453 K, for parallel devia-
tions.

Recapitulation. The percentage of hits in shooting at a circular
target of radius B with centre at 0, the mean point of impact, is

_® = e
100(1—¢ *")=100[1— (05" =100 (1 —¢ **).

. b
A table for 100 (1 — 0-5%«*) as a function of R: R, is as follows:

Radius of circle R . . . . .
509/, zone radius Ry, =101 02 03 04 05 06

Percentage of hits

=| 069. 273| 604|1050(1591 {2208

07 | 08 | 09 1 11 12 13 14 1 15 16 | 17 | 18

28-80 (3582} 42°96 } 5000 | 5677 | 63-14 | 6901 | 74:30 | 7898 | 8304 {8651 89'42!

19 2 21 22 2:3 2:4 25 26 27 28 | 29 3

91-81 (9375 {9529 | 96'51 | 9744 | 98-15 | 98'69 | 99-07 | 99-37 | 99-56 |99-71 | 99°80

Numerical example. A pistol is fired accurately at a ring target ; the 50 °/,
circle had a diameter of 05 m.

The rings were numbered 12, 11, 10,9, 8, 7, 6 and were marked out by circles
of radii 5, 10, 15, 20, 25, 30, 35 cm.
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In 1000 shots it is required to determine the number of hits to be expected in
each ring.

Here QIfw- 50 cm, R(,o-25 cm.

Circular area up to ring 12, ]—gc—=1_#,-0'2, percentage 273,
50

» » 11, ,, =}3=04, ” 1050,
) » 10, ,, =1§=06, ” 22-08,
» ” 9, , =i§=0%, ” 3582,
” ] 8, ” =§i"=1'0’ ” 50,
» » 7 =3f=12 » 63-14,
” 1 6, , =if=14, ' 7430,
So that in the area of the ring
Number | 12 11 10 9 8 7 6
Hits a7 105~ 27 | 221 — 105 | 358 — 221 | 500 — 358 | 631 — 500 | 743 — 631
=78 =116 =137 =142 =131 =112

Thus 257 shots fell outside the outermost ring.

§ 69. Probability of hitting a given elliptical target.
1. Elliptical Target.

The coordinate axes are taken as the axes of symmetry of the
target-diagram.

The mean quadratic errors in these directions are denoted by pu,
and g,. Thus there is an infinite series of similar ellipses, for which
the axes are symmetrical.

Among these ellipses select CDC, D, with semi-axes 0C = Ay,,
OD=2p,; and the question is to determine the percentage of hits on
this ellipse.

For this purpose the given elliptical area is divided up into
elements of area df, and the number of hits on this area df is calcu-
lated, and then an integration gives the number on the given ellipse
CDC\D,.

The most convenient way is to take the element of area df in the
form of a very thin elliptic ring A BA,B,, enclosed by ellipses similar
to the boundary ellipse. Then it can be shown that round such an
ellipse the probability of a hit is constant.

The probability of hitting an element dzdy round a point P, is
found to be

1
,"‘2‘\/2’

/ ag g .
2 gt gy «/_;' e MY dy, where k=

v o

1
——,and h,=
#1’\/2 :
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and so it is equal to
1728 o
1 (D)
27‘_#1,“26 dzdy.
If the point P (zy), and with it the element dzdy, moves round
the plane, so that P remains on the ellipse ABA,B,, with semi-

2 2 2
(:;T)Q-{-ﬁ: 1, or 'U%+;y?—2 = ¢% and the pro-
bability remains constant, because e is constant round the ellipse ; and
€ th, Mo aTe given.
Integrating round the ring A BA,B,, the probability of hitting

this thin ring, of area df, is then equal to

axes ey, and eu,; then

1
e3¢ df.
277,“1#2 f
¥y
ep
ol 4 [
T \ A4 I T
K Ao
: \
7
e 1 y., —

The value of df is found as follows. The inner ellipse of the ring
has semi-axes ey, and eu,, and the area

f=€py. ey ™=y pt0. €
Therefore
df = 2mp e de.

Thence the probability of hitting the thin ring is
1

2
that is, in » shots, the number falling on the ring is ne ¥ ede.

1 2mru, e de = e~ edle,
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Integrating this over the whole extent of the ellipse CDC, D, from
€=0 to e =2\, the number of hits on this ellipse is

'nf'-xe‘*"ede =n (1=,
=0

Recapitulation. The ellipse with semi-axes
OC =hp, =1'483Aw,, 0D = Ay, = 1483\,
in the direction of the axes of symmetry of the target-diagram, and
centre O at the mean point of impact, receives 100 (1 —e~#') per cent
of the hits. Outside the ellipse the percentage of hits is 100e~",
If the ellipse CDC,D, is to represent the probable error ellipse,
receiving 50 °/, of the hits, then
tn=n(1l—-e¥), rA=4/(2log 2)=11774;
that is, the ellipse with semi-axes 1'177u,, 11774, will receive half
of the shots.
In this way the semi-axes of the ellipse may be calculated for any
percentage of hits.
In this group of similar ellipses that one is included which is the
boundary of the target, since the maximum deviations M, (about 3w,),
and M, (about 3w,), are in the same ratio. Consequently these ellipses

constitute the smallest targets, which contain a given percentage of
hits,

. . . A
The following is a table for 100 (1 — ¢~#"), as a function of ok
I ) [
B = 000 | 010 020 | 030 040
100(1 e~ =°,| 000 | 099 | 392 | 861 |[1479
050 060 | 070 080 090 10 1-2 1-4

2212 30-23 3874 4727 55°51 63-21 7631 8591

1-6 1-8 20 22 2+4 26 28 30
9227 96-08 9817 99-21 9968 99-88 99-96 99-99

Conversely :
100 (1-e"3) = o, 10 20 30 ' 40
e = 010537 0-22315 0:35668 | 051083
t
50 60 70 80 90
0-69315 091630 1-20398 1-60944 230259
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414 Accidental deviation of shells [cH. x1

In this way elliptic targets may be constructed for a given rifle
and for any range, of which the separate rings correspond to the actual
height and breadth errors, with an area to suit any definite percentage
of hits. '

2. A target with any arbitrary bounding line.

The probability of hitting a target was given in § 67 by the
following double integral, extended over the boundary line of the
. target:

huhg f f e~ ety dpdy,
aT

As shown in §§ 67—69, this double integral can be worked out,
not only for rectangles, but also for circular and elliptical boundaries,
provided the mean point of impact lies at the centre of the circle or
ellipse.

But let us now suppose that the bounding line of the target is
wholly irregular, as is the casc with the ordinary targets of the battle-
field. In such circumstances it is impossible to evaluate the double
integral in finite form. The usual method of approximation is to
suppose that the mean point of impact coincides with the centre of
gravity, and the target is then replaced by a circle or rectangle of
equal area, described about the centre of gravity.

Rothe has lately described a general method for dealing with cases
of this kind: it is partly graphical and partly mechanical. It deals
with a target bounded by any kind of curve, with any known errors
of deviation, or with any position of the axes, or with any assumption
as to the position of the mean point of impact. He is able to find the
percentage of hits on the target with sufficient accuracy.

For this purpose, other variables are introduced instead of &,  and

hyy, and the double integral becomes 711_ f f e~ (@41 dx dy. Then Rothe’s

general procedure is to evaluate the double integral [ff (=, ) da dy
over a given bounding line with the aid of the planimeter.

The process is briefly as follows. A plan of the surface ¢{=f (=, ¥) is made by
means of contour lines of section, along which z=constant. He draws the bound-
ing line of the integral, and determines with the planimeter, for a sufficient
number of constant values of ¢, the sections of the cylinder erected on the bound-
ing line. These sections are plotted as ordinates, corresponding to ¢, in a new
diagram, and a curve is constructed in this way. He determines by the plani-
meter the area bounded by this curve, the two extreme ordinates, and the axis
of abscissae.
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R. Rothe has employed this procedure for many examples, for
instance on an infantry breast-plate of 1283 em? surface; there he
found the probability of hitting was 0:662, while the assumption of a
circular target of equal area gave the value 0-754.

Rothe’s planimetric method can also be extended to a target in
threc dimensions.

Finally he has shown how to obtain the point of mean impact, and
how the target must be placed so as to obtain the greatest probability.
Further details cannot be given here.

70. Application of Gauss’s method of Least Squares,
PP

1. The matter may best be illustrated by means of a simple
example,

Suppose at the ranges X =1, 2, 3, 4, 5, 6 km, the times of flight
are T'= 270, 6:20, 10:30, 15:20, 21-40, 30-30 seconds.

A relation between X and T is required, and let us suppose that

T=AX + BX?,

For the determination of A and B, there are six equations,

namely,
27=1.4+12. B, 62=24+2°B, 103=34 + 3B,
152 =44 + 4°B, ... and so on.

Considering only the first two equations, we find 4 =23, B=04;

so that the relation is

T=23X+04X% viiiviivivinnneninnnn. @)

Then the values of T are as follows:

measured, T= 27 62 103 152 214 303,

calculated, 7= 27 62 105 156 215 282,

errors, f=+£0 +0 02 +04 +01 -2,
=02+ 04 + 0112 + 212 = 46,.

It is required to find the most convenient way of using all the
observations, or of distributing the errors over the whole series. This
consists in the method of Least Squares. The coefficients 4, B, must
be so determined that the sum of the squares of the errors is made as
small as possible. The procedure is analogous to the graphical method

of drawing a smooth curve through a series of observed points.
The errors are the differences between the calculated and the
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416 Accidental deviation of shells [om. x1

measured times of flight; so that the sum of the squares of the
errors is
(1.A+12.B—27) 4 (2. A+2*. B-62)+(3.4+3*. B—103)+....
If this is to be a minimum, we have by partial differentiation
(A+B—-27)4+2(244+4B-62)+3(34+9B-103)+... =0,
(A+B-27)+4(24+4B-62)+9(34+9B—-103)+...= O,}
and
AQ+44+9+..)+B1+8+274+...)=27+2%x62+3x103+...,
A1+4.2+9.34+..)+B(12+42+9%4+...)=2T+4x62+9%x103+....}
914 +441B=3956, 4414 +22758=19892,
A=181388, B=052276,
T=181388X + 0-52276X2. veveeeerenene, ()

Equation (2) gives the relation between 7' and X for general pur-
poses, as deduced from the six observations.

As to the mean error of any individual determination of the time of
flight, the following is the procedure to employ: Calculate from (2)
the times of flight for X=1, 2, 3,...; then to the observed times of
flight

27 62 103 152 214 303

correspond the calculated times,
233664 571880 1014648 1561968 2213840 2970264,
so the errors are
036336 048120 015352 041968 073840 059736,
and the squares of the errors are
013203 023156 002357 017613 054523 035685.

Thus 2f2=146537, which is smaller than for any other values of]
4 and B; for instance the determination from (1) gave Zf?=4-62.

' . Sf: .
Further, the mean quadratic error p= \/ f , where n is the

n—m
number of observations and m is the number of coefficients to be deter-
mined ; so that here p= %ﬁ_igz = 0605, and this error u, and also

the probable error w, have thereby been reduced to a minimum, on
the assumption of a function of the form

AX + BX®
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2. The problem may also be treated in the following manner:

We know that T'=¢ (X, X% 4, B); and for the unknown co-
efficients A and B, some approximate values are obtained ; denote
them by 4 and B. They may for instance be determined from the
two first observations, X =1, =27 and X =2, T'=6'2; and then
Ad=23, B=04.

Therefore we suppose that 4 = 4 +a, B=B + 8; so that

=¢(d+a, B+RB);

and expanding by Taylor s theorem we get
T=¢(4,B)+a + B

Here ¢ (4, B) denotes the approximate value of 7, denoted by T,
obtained from 4 and B; and so

T-T= 4’ VB /3 4’
But in the preceding case

- 0p dé
¢=4dX + BX? A= = X, B =X3
Therefore _
T-T=aX+B8X2
It follows from the above that the values of the error I'— T =«
for the various ranges X are as follows:

T-T=«|X

) 0 |1
0 2

-02 1|3
—-04 | 4
~01]|5
+21 |6

The method of Least Squares must be applied again to the equa-
tion « = aX + BX? to obtain the coefficients « and B ; so that

(.14 8. P=0y+(a.2+8.2:-0)
+(a.34 8.3+ 02)*+... is & minimum.
Proceeding by partial differentiation, we get
9la+ 4418 =99, 44la+ 22758 = 649,
a=—04862, B=+01228.
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Consequently the values of A and B are
A =4 +a=28-04862 =18138,

B=PB +8 =04+ 01228 = 05228,
and ’
T'=181X + 0:562X?%, as before.

The accuracy of this procedure can be shown without the use of
Taylor’s theorem, as follows :
Suppose the approximate values, 4 and B, to be found, and

T=AX +BX*, T=AX+ BX-
Then
T—T=(A-A4)X+(B—B)X? or k =aX + BX2.
3. The method described in 2 must be applied when equations

are treated which cannot be solved by an approximation process.
Suppose, for example, it is required to obtain a relation between

v and @ in the form
y=AxB + C.

Suppose the values ¥, %, ... to correspond to the values 2, @,....
Then A, B, C are determined from the condition

(A2 + C — )+ (Az,f + C =y + ... = 2 minimum;
and so we have the three equations
B (A2 B+ C—y) + 2B (AzP+C—y)+...=0,
zBlogz, (Ax? +C —y) + 2,8 log 2, (AzB+ C — ) +...=0,
A2B+C—y,+ AzP+C—y+...=0.

- But these equations can only be solved approximately ; and approxi-
mate values, 4, B, C, must first be determined.

This can be done in the following manner. The observed values, #;, %5, ...,
corresponding to the observed values ¥, 73, ... are plotted on a diagram, and a
curve is drawn through the points. The slope of the tangent to this curve is
measured at the first two points, and let p be the tangent of the. angle made with

the axis of 2. Then %=p=ABxB'1, and if p; and p, are the values of p at the

first two points on the curve, we have p,=A4BxB-1, and py= A4 Bzr,B-1.

These equations give the values of 4 and B; C is found from
the equation y, = Ax,#+ C. This gives us the first approximations,
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4,B,0C: using these values, we get an approximation for y from the

equation 7 = A«B + C.
Further approximations, &, 8, ry are’ then introduced, so that

y=¢(d+a, B+B8,C+y):

therefore
_ 0 0 0
y—y=aa§+/93%+~/5%-
But .
% _ 3.0¢_ =3 .0 _
34=%0 a—B—A.z log z; a—C—l.
Thercfore

y =7 =oar? + BAE logx + 1.

Here only the first powers of «, 8, and v occur; so they can be cal-
culated by method (1).
This, therefore, gives us further approximations, viz.,

A+a B+8, C+ry:

. - ' - - - -
in some cases it may. be necessary to continue the process of approxi-
mation to a further stage.

4. The best method of expending ammunition on the preparation
of a range table must now be considered.

With guns of heavy calibre, the question is important, having regard to the
available ammunition. Suppose it is required to prepare a range table, and more
particularly to ascertain the angle of departure for several ranges. Then we must
consider whether it would be better to fire a few shells at a large number of ranges,
or a large number of shells at a few ranges. Vallier prefers the latter plan of
firing a number of shells at a few ranges. On the theory of probabilities, he
arrives at the following conclusions for guns of medium calibre,

If less than 16 rounds are available, he recommends firing at a single range,
taking measurements of the initial velocity, »,, and of the error in the angle of
departure,

If between 16 and 24 rounds are available, he recommends firing at two ranges,
with the same measurements as before.

If between 24 and 40 rounds are available, then three ranges should be chosen,
with measurements as before.

With heavy calibres, the number of rounds can be decreased by about 33 per
cent.

272
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The useful ranges , at which the practice should be carried out, are given in
the following table, in which W denotes the longest range that comes into
consideration.

Number
of rounds Range « to be chosen
employed
1 0 | v, measurement
2 0 0828 W
3 0 0464 W 0928 W
4 0 0281 W 0679 W | 0960 W
5 0 0-186 IV 0:4875 W| 0790 W | 0-975 W
6 0 0131 7 0359 W | 0:622W | 0849 TV | 0-981 W

This holds when the initial velocity v, is kl.lown with the same accuracy as
that to which each range «# can be measured.

On the other hand, if the accuracy of the v, measurement is higher than that
of the range:

Number
of rounds Range x to be chosen
employed .
1 0 ¥y easurement
2 0 0894 W
3 0 0603 W 0-952 W
4 0 0415 W 0730 W 0-996 W

In some cases the supply of ammunition may be such that the measurement
of v, depends on a measurement at the short range, 2. In this case the table is
as follows :

Number
of rounds Range x to be chosen
employed
1 x
2 & | 0°1057 2+ 0894 W |
3 2 10397 2'+0'603 W (| 00482 +0-952 IV
4 2 | 0685 2/+0'415 W | 0270240730 W | 00042/ 40996 W

These rules hold as well for any ballistic function.
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Suppose, for instance, with an infantry rifle the hits on a vertical target are
to be examined, and -that as regards the measurement of v, the first assump-
tion holds and that 2000 m is the greatest range in the range table; then
if there are to be 6 ranges, the targets should be placed at about the follow-
ing ranges, O (measurcment of v, between 0 and 50 m), 260 m, 720 m, 1240 m,
1700 m, 1960 m.

These rules of Vallier cannot always be used in practice ; nevertheless they
are useful in the preparation of range tables.
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CHAPTER XII

On the effects produced by the explosion of shells

§ 71. The penetration of bullets and unéxploded shells into
rigid bodies. Calculation of the depth of penetration.

The passage of a shell through the air tends to accelerate the air-
particles, which it sets in motion: this causes waves and eddies in the .
atmosphere. Waves of condensation are also formed when the pro- -
jectile penetrates a fluid or solid body, but these waves generally
precede the shell or bullet, since their speed is high. Thus the
veloclty of sound in air is about 340 m/sec, in wood about 1440 m/sec,
and in steel 5000 m/sec. The effect of these waves in a block of stone
or metal is sometimes seen in the fact that small pieces break off on
the opposite side to that on which the shell impinges.

The effect of cohesion must also be overcome. The projectile
loses energy owing to two causes: in the first place, it accelerates the
particles of the body with which it comes in contact, and the amount
of this acceleration depends on the ease with which the particles can -
be displaced: and in the second place, work is done against the forces ]
of cohesion. Let W be the resistance opposed to the motion of the
shell by the body, and let the shell be moving with velocity v and
have a cross-section R*s. Then Euler supposes that W=maR?:
Poncelet assumes that W=mR2(a+ bv*); and Résal supposes that
W =aR?(av+be®). On the other hand T. Levi-Civita assumes that
W=mR2(a+b?) (1 +kv,). Here v, denotes the velocity at the
moment of impact, a and b are constants, which depend on the
nature of the body into which the projectile penetrates, and % is an
empirical constant.

Taking Poncelet’s formula, the calculations can be made as follows.
The projectile penetrates over a short distance into the body: this
short path can be considered as a straight line, seeing that the effects
of gravity may be neglected. The resistance, which is equal to
7 R* (a + bv?), is then the only force to be considered, and ¢ is a
coefficient depending on the shape of the shell-head. Let the projec-
tile penetrate into the body through a distance # in a time ¢, reckoned
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from the instant of impact. Its initial velocity at the moment of
impact may be supposed to have been v,, and at the end of the time

titisv. Let IE) be the mass of the projectile. Then we have

Pdv_ Pvdv .
To g de i@t
Integrating we have
P a -+ b'vo,
= %bgR;i Ogm;, .................. (1)

since when ¢t =0, z =0, and v=1,, and

P - b - b ;
=m{mn‘v‘,'\/a—tan 1”\/5}' ...... )

If a body, of a thickness of # metres, is penetrated by a projectile,
then equation (1) gives the velocity which the projectile has at the
moment of escape from the body, and equation (2) gives the time
taken to effect the penetration. If, however, the body is too thick
for complete penetration, the projectile will eventually come to rest
within the body, in which case v=0. Then the total depth of pene-
tration will be

P by
X = gt 8 (1425 (®)

and the total time of penetration is

re—L (00 «/ g) ............... (#)

wRegiVab

The value of ¢ will be discussed later. According to the tests
carried out by Didion-Morin-Piobert in 1839—-1840 the coefficients
a and b have the following values, viz,,

For limestone ... a=12,000,000: ——I?Zb= 15.

1085 -
Strong masonry ... a= 05,520,000: - = 15.
Ordinary masonry a= 4,400,000 %’= 15,
Brickwork v e a= 3,160,000 %’= 15.
Sand and gravel ... a= 435,000 %$=QOO.
Clay a= 1,045,000: %’: 35.
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6
Loose earth: covered with grass «.  @= 700,000: 1?1—6= 60.
. 1085
Loose earth : half clay, half sand a= 461,000 = 60.
6
Dampeclay .. e e .. a= 266,000 1—%—”: 80.
) = 10%b
Oak, beech, ash ... a= 2,085,000 = 20.
Elm a= 1,600,000: %ﬁé= 20.
. . 10%%
Pine and birch ... a= 1,160,000 == 20.
Poplar ... a= 1,090,000: %’: 20.

Vallier in 1913 came to the conclusion that for earth, wood, and
: 6
masonry, the value of l—od—b is 50, and the value of b¢ is determined

experimentally, so that equation (3) becomes

2
X=£%log(l+%i}—64), .................. (3)
where A depends on the nature of the body into which the projectile
penetrates, and must also be found by experiment.

Pétry in 1910 gives the following formula, viz.,

P (v)
X =, (6)

where X is the depth of penetration in metres, P is the weight of the
projectile in kilogrammes, and 2R is the calibre in centimetres. Here
x 1s the only coefficient which depends on the nature of the body.
Its value for concrete masonry is 0:64: for good stone masonry, is
0-94: for good brickwork, 1'63: for sandy earth, 2:94 : for ploughed
earth, 3:86: for clay soil, 5-87: f(v,) is a function of the velocity of
impact, and its value is given in the following table.

vy = 40 [ 60 | 80 {100}120|140(160|180{ 200 | 220 | 240 | 260
J(vo)= 0:33]10:72(1-21|1-76(2'36{2°97|3'58{4°18| 4-77| 534 5'89] 641
Vg = 280 | 300 | 320 | 340 [ 360 | 380 [ 400 | 420 440 | 460 | 480 | 500
}'(vo_)= 692|7-40/7-87|8-31{87419:15{9-54 9'9é 10-29|10-64:10-98(11-30

The projectile may, of course, glance off the surface of the body:
Pétry thinks that this happens with the surface of the earth if the
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angle of impact, i.e., the angle between the direction of motion and
the normal to the-surface of the ground, exceeds 75°: this angle is
said to be 60° in the case of masonry or brickwork. Sometimes the
depth of penetration is used for forming an estimate of the velocity of
impact, and in this connection Journéce’s empirical formula is often
useful. He considers that if a bullet penetrates a fir tree,

X = 0000093 dvg?, ........ RN ¢ B

where X is the depth of penetration in centimetres, d is the diameter
of the bullet in_centimetres, and v, is the velocity of impacs.

Example. A shrapnel bullet, weighing 10 grammes, and having a diameter of
1-22 cm, is to strike a man with such force as to put him out of action. For this
purpose 8 m-kg is sufficient. This velocity is to be roughly estimated from firing
into a fir trece. What should be the depth of penetration? We have

10 w2

8= 3% 981 x 1000

and thus =125 m/sec.
Thus the depth of penetration is

X'=0-000093 x 122 x 1252=1-8 cm.

The formulae of Poncelet, Euler, and Résal rest, of course, on
assumptions, which cannot be expected to give very exact results.
The tables, giving the values of @ and b in Poncelet’s formula, do not
pretend to any great accuracy, more especially as it is not possible to
give any exact definition of good masonry and the like. Moreover the
experiments, on which these values are based, were carried out with
much lower velocities than can be obtained with the modern rifle.

The coefficient ¢ is said to be equal to unity for spherical projec-
tiles, and for the ordinary shell it is said to be §. In the formula

W=7rR'3az'(1 +bl)
X a

L. . . b .
it is better to determine the constants az and p by experiment. For

. this purpose, it is best to find X’ and X for two different velocities
-of impact, ¢ and v,. Then by the use of equation (3), we have two

. . . b
| equations for the determination of a: and pr
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§ 72. Depth of penetration of a projectile.

1. The formula of Levi-Civita was suggested by the fact that with
the modern rifle the greatest depth of penetration takes place at a.
considerable distance from the muzzle. For instance, the following
table was drawn up in 1900 for the French bullet.

Ata I Depth of penetration of the bullet in
distance of ' Sand Loose earth Pinewood Qak
10 m 11 cm 25 cm 90 cm 20 ¢cm
40 » 18 ” 39 » 82 1 19 »
100 ,, 32, 62 ,, 70 ,, 18 ,,
200 ,, 45 ,, 75, 60 |, 18 ,,
300 ,, I 46 ,, z7 ’ 56 ,, 17 .,
400 ,, 44 73 53 ,, 16 ,,
500 »n 40 2 6.7 » 50 » 15 ki
600 ,, 38 63 ,, 49 , 15 ,,

The fact is usually explained by the supposed compression of the
bullet. If the velocity of the bullet is very great, the compression
causes the sectional area of the bullet to be considerably increased.
The effect of the change of wR? is more important than that due to
@+ bv?; in consequence the resistance is very considerably increased
with the result that the depth of penetration may be greater at a
lower velocity. In order to allow for this, we ought to multiply wR?
by 1+ kv, where % is determined by experiment. Of course, this
throws no light on the true nature of the resistance or its relation to
the other variables. The most that can be said is that these formulae
provide a method of mathematically examining a certain limited
number of cases.

Some part of the energy of the bullet is undoubtedly expended in its com-
pression and deformation. Various experiments were made in the author’s
laboratory and in the testing station at Halensee, near Berlin: the results are
shown in the appended table, the ordinary S-bullet being fired into beechwood
and sand. The table includes the velocity of impact, the ranges at the end of
which the final velocities with a normal charge are equal to the velocities of
impact, the depths of penetration, and remarks on the nature of deformation of
the projectile. The lower velocities were produced by decreasing the charge.

2. N. von Wuich proposes the following indirect method of deter-
mining the law of penetration for a given material. The depths X,
X', X7, corresponding to impact-velocities v,, vy, ¥, are noted. Let X
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' ’ Firing into sand Firing into beech
8 g g
— = ]
s w0 =1 —
2 5 § g
3 @ P =
2 g ] . ] v .
i = 3 Nature of deformation 3 Nature of deformation
b ) 2 of projectile g of projectile
By a — ey .
= * © ©
g |5 | g 5
£ £
98 | 2500 | 19'6 | Nodeformation:thesur-| 4 No deformation

face slightly roughened

330 | 874 | 247 * Ditto 12:7 | Bullet compressed : sec-

tion becomes oval, with

the long axis in direc-
tion of fibres

473 560 | 286 Ditto 26-5 | Ditto, but more marked
deformation

579 | 398 | 314 Bullet compressed 416 Ditto, but greater
: ' deformation

710 | 218 { 22'4 | A portion of the lead is | 63 Ditto
. pressed out at the back
735 | 186 | 19°7 { The outside completely | 70-7 Ditto
broken
762 153 | 182 Ditto, but nore 767 Lead begins to be
markedly extruded at the back
788 121 | 17 Ditto, shape not 407 | Marked deformation.
recognizable External surface broken:
the lead partially
extruded
815 90 | 158 | Separate fragments of | 347 Ditto: bullet bent :
the bullet tip uninjured
870 2 (138 Bullet broken into 29-7 | Maximum deformation.
small fragments The parts still cohere.
)| & Tip almost uninjured
The first deformation was noticed with Maximum depth of penetra-

an impact-velocity of 569 mfsec. Maximum | . o .= "
depth of penctration, 33 cm. Range, 314 m, tion, 767 cm. Range, 153 m.

2

! be the greatest of these depths. It is then assumed that after pene-
2 trating through a depth of X—AX* the bullet still has the velocity vy,
I and after penetrating through X—X", it has a velocity #". In this
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way the velocity v is obtained as a function of the distance through
which the bullet has travelled, and therefore

W=t _ v .

This assumes that the rate of travel is independent of the deform-
-ation already produced. This hypothesis is not generally true, as it
1s impossikle to suppose that the compression of the bullet, and the
lateral friction of the material through which it js passing, produce
no effect. .

3. Assuming that a shell-hole is of the nature of a surface of
revolution, Poncelet endeavoured to determine its shape in the follow-
ing manner. He supposed that the volume of the material excavated
by the penetration of the shell was proportional to the loss of vis viva.

x
Therefore " my?de is proportional to ;q (vy* — %), where y is the ordi-
Jo
nate of the excavated curve, corresponding to x, the distance of
penetration. Therefore ;—Jvdv:—kwy?dx. This gives the relation

between @, 7, and v; and the use of (1) in § 71 gives us that between
z and . Thus we have the equation for the contour-line of the curve
of excavation. But the results, obtained by this method, are not in
agreement with the facts, as found by experiment. This is not
surprising seeing that the process of penetration is a complicated
phenomenon. The particles of the material are by no means so
arranged as to be directly across the path of the projectile: a certain
portion of the vis viva is used to overcome the forces of cohesion, and
the percentage, which is so applied, is very variable.

4. There are many empirical and theoretical formulae for deter-
mining the thickness of armour plate, which can be penetrated under
given conditions. G. Ronca quotes no less than 36 such formulae.
For present purposes it may be sufficient to give the one suggested
by the firm of Krupp in 1880, and also a formula which has been
largely used in France.

Let 2z denote the wis viva of the projectile in m-kg per sq cm of

. P2
cross section. Therefore 2 =Inleg’
of the volume of a sphere, having a. diameter equal to the calibre of
the shell., '

Let e denote this vis viva per ce
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3Py
8rlttg’

3 S . — [4 Sg
z=IOOS«/—D-,01 e-—loO(—D) ,

where S is the thickness of the arnour plate, in centimetres, 1) = 2R
= calibre in c¢m, P is the weight of the shell in kilogrammes, v is the
velocity of impact in m/sec, and g = 981, This formula presupposes
that the direction of impact is at right angles to the surface, and that
Krupp’s wrought iron armour plate is used without any support in the
rear. If the impact takes place at an angle a with the surface of the

Then e = Therefore the formula is

100 3/8 . .
plate, then z = Sna N «/ ik It is perhaps better to use a coefficient

A instead of 100, and to determine it by experiment with a similar
shell and a similar plate, seeing that the natures of the shell and of
the plate undoubtedly affect the matter. :

Ezample. Calibre D=2R=26 cm, S=38cm, P=205kg. It isthen found that
v=468 m/sec.

Jacob de Marre gives another formula, which is

A8 (2R)™
V= —pm

where S and E are measured in decimetres. This supposes that the

direction of impact is normal to the surface: but if this direction makes
143

an angle a with the normal, then 8§ must be multiplied by (cos 3—;\ .

For ordinary steel A is said to have the value 1'53, and for hardened

steel de Marre gives the formula

153 (2R)"™ 8

Shells, which are used for firing at armour plate, frequently have
_ caps of wrought iron or mild steel, as suggested by Makarow in Russia:
this causes them to penetrate further into the plate: Pétry states that
the depth of penetration is increased in the ratio of 245 to 190. This
phenomenon is usually explained by supposing that the cap acts as a
sort of lubricating material. It is more probable that the shell slides
through the expanded cap, and that the latter acts as a kind of band,
protecting the tip of the shell. The tip of the projectile is thus pre-
served from injury. Instantaneous photography might perhaps throw

v = V1885 — 0:0014S x
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some light on the matter. B. A. Mimey has propounded a theory on
the subject, to which reference is made in the notes: he treats the
matter, theoretically, and considers it to be a particular case of the
deformation of a solid body by impact.

The following phenomena are observed when a modern steel-clad
bullet is fired at a plate of mild steel. The steel covering breaks away
at the tip: the lead core, which forms the larger part of the projectile,
1s then driven forward and excavates a portion of the plate. The steel
portion gradually falls to the rear, and the effect of friction is to break
it to pieces.

If one of the modern type of steel-clad bullets is fired at a hardened
steel plate of sufficient thickness, it flies to pieces without penetrating.
The fragments have considerable velocities, mostly in a lateral direc-
tion across the surface of the plate: boards of wood in the immediate
neighbourhood are more or less sawn through by the flying particles,
very few of which fly back along the line of fire. It would have
seemed probable that the fragments would mostly tend to fly back:
the inertia of the hinder portion of the bullet is the most likely
explanation of the facts.

5. It is a question as to the precise amount of energy, which a
bullet must possess, in order to put a man or a horse out of action.
The French suppose that 4 m-kg is sufficient for a man, and 19 m-kg
for a horse, whereas in Germany it is thought that 8 m-kg is required
for a man. The estimates are necessarily rough: something depends
on the calibre of the projectile, and something also on the position of
the point of impact.

J. Pangher states the following facts for projectiles having a calibre between
6 and 11 mm. If the vis viva per square centimetre of cross section of the pro-
jectile falls below a certain minimum, contusions are the only effect: this minimum
is 2 m-kg per sq cm for a man, and about 10 m-kg per sq cm for a horse. The
depth of flesh wounds is proportional to the vis v7va per unit area. The destruc-
tive effect of bullets in the neighbourhood of bones is proportional to the total
energy. The least impact-energy that is’sufficient to break a man’s bones is
5 m-kg: in order to produce an absolutely certain result, 16 m-kg are required ;
with a horse the correspondmg figures are 17 and 35.

6. If a projectile strikes a body without complete penetration,
the total heat that is produced is not always equal to the calories in
the energy of impact, because it frequently happens that portions of
the projectile are ejected laterally or in a backward direction. Thus
a portion of the energy is wasted externally. The energy of impact is
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Py?

854g

remaing at rest during the time of impact.. If, however, the body,

together with the projectile, moves forward, then the heat produced
Prr,

is only g4 (P + Py’

calories, and this is equal to the heat produced, if the body

, where P, is the weight of the body struck by

. . _ P

the projectile. The velocity of their common motion is u = 1,1;_ I
: o : (P + Py)

Before impact, the vis viva was 12);-, and after impact it is —(—%

the difference is therefore the amount of energy which has been
dlss1pated as heat.

7. Let us consider a bullet, weighing 14°7 grammes; its calibre
is 079 cm, its velocity is 444 m/sec, and its vis viva is 145 m-kg.
Therefore an average resistance of 145 kg over a space of 1 metre can
be overcome or one of 1450 kg over 10 cm, or one of 20,700 kg over
07 cm. Such a bullet can penetrate an iron plate of a thickness of
07 cm (see Wille, Waffenlehre, vol. 1, p. 215,1905). The force required
to punch a hole of this size in the plate is

0'79 x 0°7 x 0'8 x 35007 = 5000 kg, approximately,
if we suppose the mechanical strength of the plate to be 3500 kg per

- sq cm. It therefore seems that calculations of this kind lead to wholly

|

|
|

inaccurate conclusions. If the question is treated on statical principles,
we must suppose that the punch is not permanently deformed, and
that the velocity is negligible. But in this case neither of these
assumptions is true. Let us take a copper wire, 15 cm long and 0°5 cm
in diameter, and clamp it at the ends: let us suppose a gradually
increasing pressure to be applied to the middle of the wire. Then the
tension in the wire will eventually reach a maximum. After this, the
tension falls quickly and the wire breaks. In the first part of this
process, work is done in extending the wire, and in the second, work
is done in breaking the particles asunder: there is no question of any
noticeable vis viva. If the wire is broken by the modern type of bullet,

.instantaneous photography gives no trace of any extension of the wire.

%

The wire seems to be instantaneously fractured at the moment of
impact. When the bullet travelled further over one or two lengths
the wires seemed to be slightly coiled upwards and downwards in the

" neighbourhood of the point of fracture: the rest of the wire seemed

to be at rest. At a later stage, the wires are seen to be slightly bent
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along their whole length. In this case the work expended on stretch-
ing the wire is probably small : the main part of the energy is spent
in breaking the wire, while the #s viva and the resistance due to
inertia are considerable. The coiling of the wires, upwards and
downwards, near the point of impact takes place very quickly: the
other portions of the wire are subsequently set in motion: consequently
in comparison with the small mass of the bullet, a not inconsiderable
mass of the wire is set in motion. Consequently the accelerations
and the resistances, due to inertia, are seen to be of great importance
in the case of firing a bullet through a plate, whereas if the hole is
slowly and steadily punched, the strength of the material is the only
consideration.

As for the effects on the bullet, we find that in some cases it is
shattered, and in other cases it is quite uninjured, though the con-
ditions are such that in neither case is the result expected. Suppose
that a steel-clad bullet, weighing 10 grammes, is fired into a large
volume of water with a velocity of 900 m/sec. It undergoes consider-
able compression and is frequently broken to pieces. On the other
hand, a candle can be shot through a thin board, and afterwards fairly
large pieces can be picked up. A rod of soft wood can be fired through
a board of harder wood without being much bent or deformed.

The time, which is taken by the penetration, is a factor of the
greatest .importance. In the case of the wooden rod, there is not
sufficient time for bending or compression. Generally speaking, the
deformation is small, if the time-interval is short, always supposing
that the forces are equally great in all cases. A skater can pass rapidly
over a thin sheet of ice, which would give way, if he were to stand
still. The barrel of a rifle seems capable of withstanding a greater
gas-pressure without exceeding the elastic limits than would be ex-
pected from a statical examination of the problem. The copper cylinder
in a crusher apparatus is under certain circumstances less compressed
by the gas-pressure than it would be by a similar pressure in a lever
press. When the wooden rod hits the board, there is a pressure at
the front end, and consequently a retardation. This difference of
pressure and the retardation are transmitted with considerable speed
through the rod: this speed is equal to that of the Jongitudinal waves
of sound through the wood. Theboard is pierced before great differences
of pressure can be set up, and before there is any great relative retar-
dation. There is thus little tendency to bend or compress.

If a large glass plate is suspended by two pieces of string, and &
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bullet is fired at it from a modern rifle, a hole with sharp edges is
formed in the plate: its diamecter is about equal to that of the bullet.
The glass plate seems scarcely to move, and the velocity of the bullet
is hardly diminished. The maximum force of resistance is certainly
considerable, but its time-integral is very small. The glass plate bends
transversely in all directions, radiating from the point of impact.
This transverse vibration is shown by instantaneous photography: the
negatives indicate waves of condensation and rarefaction in the air
on either side, which can be seen for a short distance from the point
of impact. But before any notable bending of the plate can take
place, the bullet has passed completely through the plate.

The time, which a bullet takes to penetrate into a large volume
of water, is much longer than this. The force of resistance, due to the
water, is proportional to the square of the velocity, and this explains
why a steel-clad projectile is sometimes compressed to pieces. Suppose
a cylindrical bullet, with a length of 5 cm and a cross-section of 1 sq em,
to be moving in the direction of its longitudinal axis with a velocity
of 800 m/sec, and to strike a considerable mass of water at right angles.

The dynamic resistance of the water is usually supposed to be
0———’;_1;1302, where F' is the cross-section of the body in sq m, and « is
the weight of a cubic metre of water in kilogrammes. Let us take
this value as correct: then the resistance to motion is about 4500 kg,
or at any rate of this order of magnitude. A force of this kind is
sufficient to break up the projectile, if, as in the present case, it acts
on it for a sufficient length of time.

As for the case of the candle, shot against the board, or the relative
motion of the water with respect to the projectile, these things are
included in those cases of motion in which a soft substance in rapid
movement appears harder than if it were at rest or were moving
at a low speed. For instance, a piece of metal can be polished by a
rapidly rotating paper disc, and a blast of air from a compressor feels
like a solid substance. In these cases, the resistance due to inertia
plays an important part.
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§ 73. The explosive effects of shell bursts.

1. CONICAL ANGLE, RESULTING FROM THE EXPLOSION OF
SHRAPNEL AND SHELLS.

If a shell explodes, the centre of gravity of the fragments continues
to travel over the same trajectory as before. The fragments continue
to rotate in the same way as they previously rotated in the coherent
shell about the longitudinal axis. Their axes of rotation about their
respective centres of gravity immediately after the explosion will in
general be parallel to the axis of the shell before the explosion. The
angular velocities of the fragments about their centres of gravity must
be the same as the angular velocity of the shell immediately before
the explosion. The fragments move within a cone, the axis of which
coincides with the position of the tangent at the moment of explosion:
the angle of this cone is the conical angle, the magnitude of which
must be ascertained. Certain fragments, amounting to about 15 per
cent of the whole, disperse in an irregular fashion, and these are
usually neglected in the methodical investigation of the problem.

Calculation of the Conical Angle.

The velocity of a flying fragment may result from four differens
causes.

Firstly, some part of this velocity is in the direction of the tangent
to the trajectory at the moment of explosion: therefore in the direction
of the axis of the cone, it has a velocity v, equal to that of the shell
before the explosion: this can be calculated by the methods explained
in Chapter VIII. When the point of burst is near the muzzle-horizon,
this velocity can generally be taken as that with which the shell would
strike the ground.

Secondly, a part of the velocity is at right angles to the tangent
and is due to the force of the explosion. This velocity is fairly high
in the case of shells, and may amount to anything between 400 and
2000 m/sec. With shrapnel, this velocity, which we will call v, 1s
much smaller: it varies considerably with the nature of the construc-
tion of the shrapnel. In any case there is a certain velocity in the
direction of the normal, the problem being similar to that of a shot-
gun. In this latter case, the shot escape from the muzzle together
with the exploded gases. There are thus gas pressures between the
different shot, which tend on the whole to drive the shot outwards
in the direction in which the gases naturally expand. (Pétry reports
the case of Belgian shrapnel, in which he estimates v, at 15 m/sec.)

Digitized by Microsoft ®



E
L

1

§73] The effects produced by the explosion of shells 435

J. de la Llave gives the following formula for the calculation of v,
in m/see, in the case of shrapnel, having a chamber in’ the middle.
According to this, v
. =—._—3°2,‘;’1’;f‘ e, 1)
where L is the weight of the charge in kg; I’ is the weight of the
shell; p, is the weight of a single bullet in kg; and p, is the total
weight of the bullets.

Thirdly, in consequence of the rotation of the shell about its longi-
tudinal axis, each of the bullets has a velocity v4 in a direction at
right angles to the axis: before the explosion the bullet describes a
circle about the axis of the shell, its linear velocity being the product
of the angular velocity and the distance from the axis. Therefore after
the explosion, the ‘bullet tends to fly along the tangent to this circle,
its velocity depending on its distance from the axis. Suppose that all
the bullets were on the cylindrical surface of the shell: then their
circumferential velocities at the beginning of the trajectory would
have been v, tan A, where v, is the muzzle-velocity, and A is the final
angle of the rifling. The angular velocity of the shell, however, falls
off slightly, and moreover the bullets are at different distances from the
axis. (See Vol.111,§184.) Therefore A. Noble has suggested the follow-
ing formula, viz.,

va=0555(m+v)tan A, ...l (2)
while Pétry supposes vz = Ay, tan A, where A =075 for the shrapnel
of the Belgian siege guns. (A should be experimentally determined.)
Finally Heydenreich gives the same formula, stating thdt A lies be-
tween 067 and 0'8.

Fourthly, a bullet may receive from the force of the explosion an
additional velocity, v,, in the direction of the tangent to the trajectory.
With shrapnel, having a chamber in the head of the shell, this velocity
is negative: Pétry states that in a French gun it was — 25%m/sec. If
the chamber is in the middle, »,= 0, and if it is in the base, v, lies
between 20 and 80 m/sec. Heydenreich thinks the average value of
v, is 50 m/sec, in the case in which the charge is contained in the
base, and weighs g5 of the whole: on the other hand v, =80 m/sec,
roughly speaking, if the ratio is 5. J.de la Llave gives the following

.~ empirical formula for shrapnel with a base-chamber, viz.,

62000

Ve =——%1
P2

where L is the weight of the charge in kg, and p, is the total weight

’q of the bullets.

28—-2
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These four velocities refer to the fragments which fly along the
surface of the cone. The two velocities v, and v, are at right angles
to one another and to the tangent: they can be compounded into a
resultant velocity, Vs, which is = V2 + vg: the velocities v and v, can
be added together a,lgebra,lcally Therefore the half of the angle at
the apex of the cone is given by

v _ Vg + o Vs

tan 3 = F o, Tadw e 4

Along the trajectory, v, and v, scarcely vary: v; decreases slowly, while
v decreases considerably, increasing somewhat finally. Consequently
the angle of the cone increases at first, and under certain circumstances
1t decreases at a later stage.

Therefore we have the following results, viz.,

() with the old type of shrapnel with the loading chamber in
the head, v, is small as compared with vg, and v, is negative, and

(b) with the old type with the loading chamber in the middle,
or with the tube-shrapnel, we have v,= 0, and

v_Ys,
bang=—"5 .o fetrieieereeaens (6)
(¢c) with the loading chamber in the base, we have
. v_ Ve v
tan g T qg, e )

For instance, with the French F.K. 97, the values of % are 7° 38'; 10°; 12° 9

respectively at distances of 1000, 3000, and 6000 metres. The values of v at the
moments of explosion are respectively 422, 300, and 230 m/sec: number of bullets,
291: weight of a single bullet, 12 grammes: total weight of bullets, 348 kg: weight
of charge, 40 gramnmes: initial velocity, vp=>529 m/sec: angle of rifling A="7°.

Using Noble’s formula for a range of 6000 m we have

vg=(529+230) x 0-555 x tan 7°
=52 m/sec,
The velocity », according to de la Llave’s formula is
620 x 00406

L T ¥ 55 m/sec.

If v, 13 neglected, the value of %’ for 6000 m is given by

Y_ 52 Y 10097
tan 5= 530455 and 2.—10 21",
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Comparing this with the value 12° 9, we sce that if the formulae are to be used
for practical purposes, », cannot be neglected in comparison with »,, and that the
value of v, is about 9 m/scc.

(d) With shells, v,=0, and

v_ Y,
ta.n2—v. errearirrrenresrinrrennres 8

The velocity v,, imparted by the explosion with shells, is much greater
than with shrapnel. With shells it is between 400 and 2000 n/sec:

therefore the conical angle with shells is much greater. Here%lies

. between 50° and 90°: it increases somewhat along the trajectory, since
v decreases. V,=+vg+ v: seeing that v, is much greater than v,
V, is nearly independent of the range and the initial velocity, v, and
therefore of the charge. The cone, along which the fragments of a
shell disperse, is partially hollow on the inside, though this depends
to some extent on the construction. Sometimes there is a second cone
inside the first, the second having fewer fragments than the first.

Determination of the Conical Angle by Measurement.
It is better to determine the conical angle experimentally than to
use the preceding equations. H. Rohne proposes to use the equation
v_ Vs

tan g = - i and to take v from the range table, or to calculate it in
- 2z

the usual way. He measures the conical angle for two different ranges,
and thus he determines V, and v, from the two equations. For instance,

let us take a range of 1000 m, for which v=421 m/sec: % is found by

measurement to be 7° 38, Also for 4000 m, » = 274 and %: 10° 54",

. Then we have

o t_. Vs o v Vs
tan 7 38 = m and tan 10 54' = 274 T v .
_ ‘ _ vy _ 66
Therefore V, = 66 m/sec, and v, =72 m/sec. Therefore tan 5= 3T

>On this plan, V, and v, are considered as constants under the given
“conditions. With shrapnel this is only partially true, since 4, which
1s a component of V, varies somewhat.

The measurement of the conical angle is usnally carried out in
the neighbourhood of the muzzle on the following plan. With shrapnel
| a vertical disc, on which the shell explodes, is arranged at a suitable
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distance. Behind this is the main target, which is divided into squares:
it is erected in a vertical position at such a distance from the disc
that, it is struck by all the bullets. By photographic methods the
position of the point of burst is determined accurately to 0'5m, The
length and breadth of the rectangle, which includes the main portion
(i.e. 85 per cent) of the flying bullets, are determined. From the known
data, we get two slightly different conical angles, v, and r,: we there-
fore take y =% (7, +72). These measurements are generally made for
two different ranges. The increase of velocity, v,, due to the charge
is generally found by a separate experiment: the shell is suspended
without a fuse, the charge is ignited, and the velocity of the foremost
bullet is measured by the Boulengé apparatus and the wire screens.
We may therefore be considered to have found v, and two values
of v for two different ranges. For these ranges we know the value of

v: therefore from the equation tan % = Vs

5. e get the values of V,
t4

for the two ranges. The arithmetic mean of these two values is taken,
and this is assumed to be the value of V, for the purpose of any-further
calculations in which the equation is used.

With shells the arrangement is essentially the same, except for
the fact that a box of sufficient size is used to intercept the flying
fragments. Taking into account the direction of the tangent to the
trajectory at the point of burst, the conical angle can be determined

2
v, and v is known from the range table. Thus we know V,, and the
equation serves to determine  under any conditions.

The value of v is of importance for the theoretical discussion of
the depth of penetration and the effect to be expected from an explo-
sion under known conditions. The velocity of the shrapnel bullets
or of the flying fragments of a shell on the surface of the cone is given
by the equation

as before. From equation (8), we have tan L %" , in which we know

VaTrr G

If we regard this as the initial velocity, we can calculate the
distance at which the highest and the lowest bullet will have sufficient
vis viva to put a man or horse out of action. After the point of burst
the uppermost bullet will move at first upwards or downwards, accord-
ing as the acute angle of descent of the trajectory is less or greater

than % .
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If tho quadratic law of air-resistance is assumed, and if, as a first approxima-
tion, tho path of the bullet is supposed to be rectilinear, the following formula
may be employed. The range b, at the end of which the velocity of the bullet
has fallen from V'to #, is given by

D v

b= a13108 5

where p; is the weight of the bullet in kg, ¢ its diameter in metres, 3 is the

density of the atmosphere, (e.g.,=122 kg/cub m): « =0-367, 0-269, 0'166, 0°132,
for the following values of L:i) respectively, viz., 400, 300, 200, and 100 in/fsec.

H. Rohne has made calculatious for a given gun and a shrapnel bullet, weigh-
L ing 10 grammes. If the bullet at the point of burst has a veloeity of 400, 300, or
200 m/sec respectively, then after ranges of 300, 262, and 145 m, its vis vize will

be 8 m-kg, and its velocity 125 m/sec.

It is possible in this way to determine whether the distance of the
. target from the point of :
burst is correct. Let us

i

N
suppose that the shell §| ~
bursts over level ground at El N,
the point A, the target ;g"‘” \‘?"\ Py
3 beln.g at Z. A is the point él Hean Length oF Barst .
-vertically. below M, and B 4l a ZE. ,
TN —3 N = ,

would be the mean point of
impact, if the shell did not
" burst. Then MB is the distance along the trajectory from the point
,of burst, M/ 4 is the height of burst, AZ is the range of burst,and AB
is the range from the point of burst to the hypothetical point of
impact. If things are properly adjusted, Z and B will tend to coincide.
If MB is a very small part of the whole of the trajectory above the
muzzle-horizon, M A B can be regarded as a right-angled triangle, and
on this assumption the following considerations are based.

The range and height of burst must be sufficient to enable the
bullets to strike a number of men: in other words, there must be a
sufficient distance over which the bullets can scatter. Obviously on
the other hand this distance must not be too great. Experience, how-
ever, shows that it is better for this distance to be too great rather
than too small.

Let AZ=q and MB=b. The values of & and b with a given type
of shrapnel and a given gun are usnally kept constant, for a definite
initial velocity : this value is usually about 60 metres. Then the

height of burst is @ tan w, where  is the acute angle of descent, and

Hark?  Poidd o lmpacr
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its value increases more rapidly than the range. Rohne states that
in France and Austria, the apparent height of burst, which is the
angle subtended by the height of burst at the muzzle, is kept constant.
In this case, b decreases with an increase of range: the values of b
with the French F.K. gun for ranges of 1000, 2000, and 4000 m are
122, 94, and 64 m respectively. The dispersion of the bullets varies
correspondingly. With the old Krupp guns (up to 1905), @ was kept
constant for all ranges, and had a value of about 60 m. With the
modern field guns, made by the same firm, Rohne says that ¢ decreases
slowly in proportion to the limiting value of the horizontal velocity,
¥, COS ®.

Thus ' E=10,0080, ..ocooiriiiiiiiiiiianine. )

¥, 81N @

and therefore the height of burst = H =

If for a given range a, H (= a tan w), and b (= a sec ») are known,
together with the conical angle of dispersion, vy, and the number of |
bullets in the shell, &V, then the bullet-density on the target can be
reckoned as follows. Let us take a section through the cone of dis-
persion on a plane at right angles to the axis at a distance b from the
point of burst. The section is a circle of radius p. Let the bullet
density on this circle be D: that is to say, D bullets strike the circle -
on an area of 1 sq m. We usually neglect 15 per cent of the bullets,
which are apt to disperse irregularly' the remainder, 0-85X, will
0‘851\

D b ’
085N

7b? tan“‘%

strike on an area = mp?=

D=

If we take the instance of the French F.K. gun, with N =291,
%: 12°9’, and b= 50 m, we have

085 x 291
D= 7 (50 tan 1250~ © +
Therefore 14 bullets will be found to be spread over an area of
10 sq m.
Heydenreich gives particulars as to the measurement of the depth
of penetration of shrapnel: a reference is made to this in the notes
at the end of this volume.

:
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.
2, ON THE SIZE OF A SHELL-HOLE.

J. de la Llave, E. Vallier, and N. Sabudski give some purely
empirical formulae relating to the size of shell-holes in earth and
masonry : but they themselves point out that great caution is neces-
sary in the employment of these formulae, as therc may easily be
errors amounting to 50 per cent. Thesc methods can therefore serve
only as rough approximations.

Let the size of the shell-hole be denoted by J cub m, any earth -
which falls back into the hole being supposed to be removed, and let
the weight of the charge in the shell be L kg. Then the formulae
are as followg. *

(a) For earth J=pum)L, where p has the value 0°503, if the
velocity of impact is less than 300 m/sec, and the value 0816, if it is
greater than 300 m/sec: m is a coefficient, which depends on the nature
of the soil,and has the value 0'7 for hard pasture land, 085 for sandysoil,
1-0 for ordinary earth,and 1-2 for ploughed land. A dependson thenature
of the explosive: its value is unity for ordinary gunpowder or picric
acid, when there is no time-fuse: it is equal to 2 for damp gun-cotton.
With time-fuses Sabudski thinks that J is 14 times as great as the
value given:by the formula. As for the shape of the shell-hole, the

3rd?t

. depth is said to be about } of the diameter, and J = T

(b) With masonry, J = 0194X\L, where X is the depth of pene-
~ tration in metres, as found in § 71 for the velocity-component in a
direction normal to the surface of impact: L is the weight of the
charge in kg. A depends on the nature of the explosive: it is unity
for gunpowder; from 2 to 21 for gun-cotton and from 2 to 22 for
picric acid. If the diameter of the hole is d, then the depth is given

by J =781d2t. For concrete, de la Llave uses the coefficient 0035

instead of 0-194, if the explosion takes place in freshly made material:
if the concrete has set a long time, this coefficient should be 0-01+.
" Figures, which have been recently obtained, cannot at present be
published. -
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§74. On the penetration of shells through water or mud.
The effects of Dum-dum bullets.

When a bullet penetrates into a soft body, like that of a horse or
a man, an explosive effect is produced within the body. If it strikes.
a pond of water, the spray dashes to all sides: or if it falls on a mass
of mud, it excavates a volume many times its own size, the shape and
dimensions of the excavation depending on the circumstances of the
case. A similar effect on a smaller scale takes place with lead, but
nothing of the kind happens with dry sand or wood. Details of
phenomena of this kind can be found in the medical reports of the
Prussian Ministry of War, to which reference is made in the notes.

The various explanatory theories may be summarised as follows :

1. The compression of the projectile produces a flattening at the
tip, and a certain amount of extrusion at the sides. Therefore a.

certain portion of the mud is pushed sideways, as shown in

—— the figure, and this undoubtedly explains something. The

pt  same thing happens with a bullet fired with the tip backwards.

':O except that in this position it is more easily compressed,

' while the effects produced with dum-dum bullets are well

known. There is also the explosive effect with heavy shells, so that.
(1) is not the main cause.

2. The temperature of the projectile is high, and this might tend
to volatilise the water or lead. Some attribute the explosion to the
steam pressure. However it seems improbable that there is sufficient
time to volatilise any considerable volume of water. Much experi-
mental work has been done to determine the temperature of the
projectile immediately after penetration. If the bullet is fired into
sulphur, gunpowder or gun-cotton, these materials are not inflamed :
this seems to give an upper limit for the temperature. The bullet has
sometimes been extracted immediately and its temperature measured
by the calorimeter: figures between 70° and 110° C. have been found
in this way. An easily fusible metallic core has been inserted in a
bullet: e.g. one made of Wood’s metal, which fuses between 65° and
70°, or Rose’s metal (95°), or Pb,Bi, (125°). With the bullet M. 88,
the maximum temperature was found to lie between 140" and 160°.
So that the volatilisation-theory seems to fail.

3. Some people suggest that the projectile resembles a spinning
top, so that powerful vibratory movements are set up within the mud.
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But experiments in the ballistic laboratory showed that precisely
similar explosive.effects were produced by non-spinning projectiles,
fired from a smooth bore. Medical reports seem to indicate that
some of the effects on the human body may be partially due to a
cause of this character, though this is not the main cause,

4. The pressure due to the air-waves is also very unlikely to be
important in this connection. E. Mach has shown that it is not pos-
sible to suppose that a definite mass of air-particles is carried forward
by the bullet: he has proved that it is only a vibratory movement in
the atmosphere, which takes place from instant to instant. Neither
have volumes of gas been observed to issue from a body after impact.
Mach measured the air-pressures in different directions round a shell,
and found them to be too small to explain any explosive effect. Neither
do the tales appear likely to be true according to which men have
been killed by the air-pressure, due to a shell flying past them.

Lehmann has lately suggested the pressure of the head-wave as
being a likely cause of the apparent explosive effect. P. A. Giinther
has therefore carried out certain experiments in conjunction with the
author in order to ascertain the facts. Plates and balls of damp clay
of different sizes were taken: holes were bored in them, slightly
larger in diameter than the bullet, which was fired through them.
If the head-wave theory were correct, there ought to be an explosive
effect, but there was no trace of anything of the kind. In another
experiment the bullet was fired immediately over the surface of a
vessel that was full to the brim with water or mercury: here again
no effect was observed. A ball of moist clay was put in a vacuum
under the air pump, and a bullet was fired through it. It was found
that the explosive effect took place in a vacuum in the usual way.
The head-wave theory therefore seems to be unsupported by ex-
perimental evidence, and may consequently be dismissed.

5. It is known that hydraulic pressure is transmitted in all
directions through the fluid, and it has been suggested that a bullet,
flying through water, transmits such pressures like the cylinder of a
hydraulic ram. Seeing that by Pascal’s law the pressure is transmitted

. in every direction, this would seem to furnish a simple -explanation
of the surprising fact that the water is shot out violently on all sides,
and even in the direction of the gun. But there are serious objec-
tions to this theory. Fluids are very slightly compressible. If there
is a high pressure inside a water vessel, a slight crack in the vessel
is sufficient to reduce the pressure at once to that of the atmosphere.
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This is the reason why hydraulic pressure is not so dangerous as
pneumatic pressure. If a vessel breaks under hydraulic pressure, the
fragments have very small velocities, while the reverse is the case
with gases under pressure.

In the present case, however, the fragments in certain cases are
flung to considerable distances. In moist clay there is a shell-hole,
more than 400 times the size of the projectile: and this seems to
make the hydraulic theory unlikely. Moreover it tails entirely to
explain why any effect is produced by firing a bullet into an open
water vessel, or in cases where there can be no question of any
hydraulic pressure. It is none the less probable that a good deal
depends on the smallness of the forces of cohesion and the ease with
which the particles can be displaced relatively to one another: and
these facts are also of importance in connection with Pascal’s law.
The maximum explosive effect is produced in cases in which the
friction of the particles is a minimum: under such conditions, they
can be relatively displaced with great ease.

6. It might be thought that the viscosity of the fluid had some-
thing to do with the matter.

C—a—
a) ) ——xr—
——0

I, > =1
. ——x——

3! e s—
—3 —r—

In fig. a, the bullet seems to drag the adjacent layers of air,
while external layers are to some extent adherent to the internal
ones: thus the whole mass of water takes part in the motion to a
greater.or less extent, just as it does in a vertical rotating cylinder,
filled with water. The long interval which elapses between the
moment of penetration and the moment of the explosion seems to
be explained simply in this way. But the explosive effects in a
lateral direction are not quite so easy to understand. Let us take a
lump of clay, as in fig. b, that is bored with vertical holes, parallel
to the direction of the bullet. Then if the viscosity-theory were
true, we should expect channel 1, through which the bullet flies, to
be fractured, but not 2—2, and still less 3—3. This, however, is not
the case, since all the channels partake of the motion. Under given
conditions the explosive effect would increase with the internal
friction of a fluid or semi-fluid body on the viscosity-theory : it would

Digitized by Microsoft ®



§74] The effects produced by the explosion of shells 445

be greater with mud or pitch than with water, and with léad or
copper it would be still greater, these metals being to some extent
of a semi-fluid naturec. As a matter of fact, lead does exhibit ex-
plosive effect, but it is mugh less noticcable than in the case of
water.

~ There are still two other theories, between which we must choose,
and these will now be considered.

7. The pressure-wave theory was enunciated by Reger in 1884,
and is somewhat as follows. If the projectile strikes a sheet of
water at high velocity, the water receivesa blow: a longitudinal sound-
wave, consisting of condensations and rarefactions, travels in all
directions in consequence of the elasticity of the fluid. The velocity
of propagation is that of sound in water, and is about 1435 m/sec:
possibly it is somewhat higher, since the velocity of sound, both in
air and water, depends to some extent on the intensity of the blow.
When the vibratory wave reaches the surface, where there is no
external hydraulic pressure, the superficial layer, A, is shot off.
‘When the next wave of condensation arrives at the surface, the next
layer B is similarly shot off. There is a certajn analogy with a
thundering waterfall (Cagniard-Latour and Dvorak), from which a
kind of mist seems to distil.

This explanation seems likely to help us to understand the
phenomenon. The vibrations, due to the impact, must under any
circumstances travel through the water in all directions. If we fire
into very deep water, there is no real explosion in spite of the fact
that the waves of sound extend in all directions. When mines are
exploded, it has often happened that the shock has been observed.
(See § 88.) If a block of stone is struck, and is not entirely pene-
trated, it sometimes happens that fragments break off on the rear
side: this may be explained on the assumption of a longitudinal
wave of impact. But the powerful explosive effect, which is seen
from shooting bullets into water or masses of clay, is not produced
by waves of elastic condensation. This is shown by the following
experiments, which were carried out by K. R. Koch and the author
in 1900.

(@) A lead tube has inner and external diameters of 46 and
55 ¢cm respectively: it is closed at the end E. The portion, EA4, is
60 cm long and lies in the direction of fire : the tube is bent, as shown,
so that a length of 95 cm is horizontal, while the final portion of
28 cm is vertical : the tube is filled with water, and is open to the
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air at 0. The vibrations on the surface of O are photographically
recorded as a function of the time by the methods employed by the
author in recording the vibrations of the barrel of a rifle in 1899.

L)
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(See Vol. 1, § 183.) The following arrangement, shown diagram-
matically in the figure, was adopted. B is an arc lamp, the light
from which passes through a stop S, and is totally reflected from the
prism Pr; to the water-surface, O : from O it is reflected to the prism
Pry, and thence by total reflection it passes through the lens I to
the sensitised plate P. An image of the opening in the stop is pro-
duced on the plate. If the plate is rapidly pulled away in a direction
Pr, Pr

|

at right angles to the direction of the light, a narrow straight line is
produced as long as the water is at rest: a very slight vibration on
the surface of the water causes a marked rise or fall in the position
of the line. The moment of firing is recorded by the image of a
spark, @, while the time-intervals are given by the records of the
vibrations of a tuning-fork. The results are given in Vol. 1v, No. 24,
where the photographic records are reproduced. CD shows the
vibrations of the tuning-fork, 4B is the line given by the surface of
the water, using the first procedure: the perpendicular from a gives
the instant of firing: the period of vibration of the tuning-fork was
00023 second. It will be seen that the first vibration, B, occurs
much later than is to be expected from the sound-wave theory.

- (b) Further experiments were made to examine the course of
the explosion. A cylinder of sheet metal, 15 ¢m long and 125 em in
diameter, was suspended horizontally by cords: the cylinder was
filled with water, the end, facing the bullet, being closed by parch-
ment paper, and the other end by a thin sheet of rubber. The bullet
measured 6 mm in diameter, and had a velocity of 750 m/sec. The

o |
z le
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cylinder was placed between a concave mirror, 4, and a camera, 5 :
the illuminating spark-gap is seen at 3. The bullet is scen to be
flying in the direction of the arrow and to be passing through the
glass-tipped spark-gap at 2. When the bullet reaches this position,
the Leyden jar discharges through the path 1, 2,3, 1. It is then

possible to observe the shape of the rubber-sheet, while the bullet is
passing through the water. The position of the spark-gap, 2, can be
varied, and it can also be placed outside the cylinder. The following
conclusions were arrived at. As long as the bullet is inside the
water, there is not the slightest distension of the rubber sheet: the
whole vessel appears to be at rest. It is only after the bullet has
completely penetrated through the vessel that the first distension of
the rubber is perceptible, and this takes place when the base of the
bullet is about 1 ¢m from the rubber sheet. At the point where the
" bullet penetrates through the parchment paper, the water soon spurts
out towards the rifle: this goes on increasing, and the edges of the
hole are gradually broken away. The rubber sheet is quickly dis-
tended in tubular form after the bullet has passed through the
_cylinder, though this distension does not begin till the bullet is
;" clear by 1cm: the water naturally. streams out through the tube.
A peculiar peaky distension takes place at the upper edge of the
* rubber and is gradually accentuated.

Another experiment was made by firing through a wrought-iron
pipe, 1 m long; the external diameter was 138 cm, and the thickness
of the wall, 8mm. The ends were sealed, as before, with parchment
paper and a sheet of rubber, the pipe being filled with water. On the
upper side of the pipe, there was a longitudinal slit, 2 cm broad, in
order to observe any lateral effects: the tube was prevented from
bending by three stout rings. The longitudinal slit was closed by a
wedge of wood, which was bound round by 40 turns of iron wire,
1'75 mm in diameter. As a matter of fact, the rubber membrane was

L e e
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always broken before the bullet reached it, but the records showed
that it did not break instantly by any means. The rubber membrane
bulges out and finally breaks. If it is very tightly stretched, it breaks
round the edges: if it is kept in tension by support on the one side,
it slits: if it is merely bound on without tension, a small round hole
is formed, the portion, shot off, being recovered entire in-the form of
a circular piece, from 0'5 to 8 cm in diameter. The force of the ex-
plosive effect may be judged from the fact that theiron binding wires
were broken and had to be replaced by hemp cords, 6 mm in diameter.

Similar results were obtained with lower velocities and smaller
volumes of water. Shots from a Flobert pistol were fired through a
lead pipe, 20 em long, and 55cm in external diameter, filled with
water: on the upper side of the pipe there were 6 small circular holes.
It was plainly seen that a definite volume of water was shot out in
the form of a mushroom, and at the same time the rubber membrane
was distended: water was also shot out at the same time through the
upper holes, the outflow being of the same type. The same thing
happened, when firing through a pig’s bladder, filled with water.
Firstly there was a cone of water emitted at the point of entry, and
then on the side of exit: these streams gradually increased in volume.
The bladder, as a whole, seemed for some time to be at rest. The
bladder exploded after the bullet had travelled over a distance of
245 cm from the bladder, having meanwhile penetrated a board,
4-3 em thick. The same sort of thing happened when firing through
clay balls.

Tielmann made kinematographic records, when firing through a .
skull. His apparatus took 50 records in a setond, and it was found
that the roof of the skull was broken off in 0-04 sec. - Bircher shot
through a cylinder of sheet iron, having a broad soldered joint: from
the shape of the broken vessel, it was clearly evident that the breakage
took place after the bullet had passed through it. In 1903, Kranzfelder
and Schwinning took instantaneous photographs by discharging 10 {
Leyden jars in succession by one bullet; thus they had a series of
10 records, derived from one bullet. Finally we may mention the
kinematographic methods, referred to in Vol. 111, § 188, which give
from 5000 to 100,000 records per second: portions of several of these
are reproduced in Vol. 1v, Tables VII to IX.

8. The result of these expemments is that it is possible to form
some idea of the processes accompanying the explosion. The energy
of the projectile is wholly or partially transferred to the body which
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it strikes, this energy being at first communicated to the particles
with which it comes into immediate contact, and gradually distributed
throughout the mass. The particles of the body themselves become
of the nature of projectiles, which have considerable velocities, though
these are gradually dissipated by overcoming the resistance of the
surroundings. Thus the various particles are set in motion with very
considerable accelerations,and move in the directions of least resistance.
The force of the explosion is most marked when all the particles can
be casily displaced with regard to one another, as in the case of fluids,
The explosive effect is not produced in bodies where there is great
internal friction, in which case the encrgy of motion is dissipated in
the form of heat. The process of explosion is very similar to that which
would take place, if a charge were placed within the body and then
ignited: the difference consists in the method by which the particles
receive their accelerations, though the results are the same in both

" cases. In shell-holes, the craters are formed so that the axis is in the

direction of least resistance.

If we fire into a plate of clay, the particles fly at first towards the
rifle, because this is the direction of least resistance. Within the body
there are pressure-zones round the line of fire: their diameters depend
on the energy of the projectile and the nature of the material, i.e., on
the internal friction and the force of cohesion between the particles.
A given mass of water or clay can be so arranged that an explosive
effect is produced, or it can be so arranged that nothmg of the kind

" can be noticed. In the first case, the
. mass 1s arranged so that it is mostly in

b}

the line of fire, as at @, or it can be largely — ——
arranged in a plane, perpendicular to
the line of fire as at b.

These facts agree with the violent effects produced. on water: the
explosion in thick mud is less violent, and much less so in the case of

4 wood, rubber, and dry sand. On account of the friction between the

)

sharp-edged particles of quartz, it is scarcely possible to explode a
sand heap. A bullet, 6 mm in diameter, moving with a velocity of
800 m/sec, will only penetrate into dry sand to a depth of 15 cm: the
sand feels hot, the covering of the bullet has a bluish colour, and
nearly the whole of the energy is converted into heat. A large part
of the projectile seems to volatilise. At the Mauser rifle factory in
Oberndorf, more than a million bullets, each weighing 10 grammes,
were fired into a sand heap, and only 500 kilogrammes were afterwards
c. 29
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collected from the heap instead of 10,000 kg. If the sand is moist,
there is a tendency to produce the explosive effect: the moisture acts
as a kind of lubricator and decreases the internal friction.

If bullets are fired from a rifle or pistol, with velocities not less
than 600 or 700 m/sec, into a bank of clay, ABKJ, the only possible
explosive effect will be in the direction towards the rifle: the resistance
in all other directions is too great. A hole will be formed, as shown

in the figure. At the mouth, the hole is of the
shape of a crater: its diameter is much larger
than that of the projectile, except in the case
~when there is some sort of support along 4B
in the form of a board or a piece of sheet metal.
Behind this there is a considerable excavation:
at this point most of the energy is given off
and is dissipated at a point where the resistance
is high. With rubber, the excavation closes almost entirely owing to
the elasticity: with water, it closes by gravity. If sections of the clay
bank are made through CD, EF, and GH, the sections are similar in
shape. Careful experiments have been made with clay. Thiel has
found with certain types of bullet, which have the tip slightly filed
away, that the hole at the point of entry into the clay is fairly smooth,
and that the edges seem to be pulled inwards. He considers this to
be a secondary effect: the edges of the hole are at first turned up on
the outside: in a short time there is a rarefaction of the air owing to
the explosive effect of the bullet: this sucks the air inwards and so
alters the shape of the edge of the hole. Schatte has confirmed this
view by photographic methods, which show that the edge is at first
bent outwards and then inwards: for the purpose of his experiments he
used the S-bullet at short ranges, firing with the normal initial velocity.

AC E 6 J

BD F H K

It may be of interest to give some results which were obtained in the author’s
laboratory in 1909 by firing the S-bullet into damp clay:
the specific gravity of the clay was 1-8.

(@) Rectangular plates served as targets for the bullet
M. 98 S: height, breadth, and thickness of plates, €0, 60,
and 10 c¢m respectively. The velocity of impact, »,, was
47 varied: diameter of hole of perforation, at front d,, in the
middle d;, at the back dj: depth of projection at front a,,
and at back a;. See table on opposite page.

(b) Clay plates, 10 cm thick, =870 m/sec. The ex-
periment was to determine the maximum superficial area
that could be completely shattered by the explosion. It was found that plates
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the sides of which measured 20 centimetres, were just on the border line, and were

generally broken into fragments.

Yo d', d‘ d’. a, a,
cm cm cm cm cm
870 10 8 11 4 4
710 10 8 11 4 35
633 55 45 10 2 3
525 4 4 8 2 2:h
475 4 4 75 2 25
400 35 35 7 2 2
388 3 3 7 2 15
330 3 4 6 2 2
200 2 3 5 — 15
100 1 2 3 — 1

(¢) Clay plates: length = breadth = 60 cm. Thickness variable: velocity of

impact =870 m/sec.

Thick

ofl‘;,];lf: s d, d; dy ay ay
cm cin " ocm cm cm cm
. 05 445 32 4-5 35 04
20 8 5°5 85 15 15

40 11 75 12 3 3
60 11 75 12+5 35 45
100 12 8 14 35 45

20 11 12 25 5 5

30 12 15 20 5 5

(d) Clay balls of variable diameters: velocity of impact =870 m/sec. When
the diameter was less than 30 cm, the balls were totally destroyed. With a ball,
having a diameter of 45 ¢m, the bullet did not break it up: d,=4 cm, and dj =8 cm.

Inside there was a nearly spherical hole, 25 cm in diameter.

At the points both

of entry and of exit, the edges of the holes were drawn somewhat inwards: this is
the so-called after-effect: portions of the fragments from the edges were carried

(¢) The same clay plates as in (a). »,=870m/sec. The
bullet was at first fired with the tip forwards, and then with
the base forwards. In the first case, d;=8cm: in the second

. case, when the bullet was reversed in the cartridge, d;=26 cm.

(f) A bullet was fired, with the base forwards, at a
large lump of clay, which had a volume of about 1 cub metre.
- A hemispherical depression was formed on the surface of the
block: the diameter of the depression was 40 cm, and the
depth 20 cm: the edges were bent up outwards. At the

bullet, completely detached from the lead core.
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& inside the ball. The bullet changed its course inside the ball: the point of exit was
4 on a higher level than the point of entry, though the bullet was fired horizontally.

deepest part of the depression, @, was found the broken steel covering of the
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§ 75. Deflection of the projectile from the normal trajectory.
1. DEFLECTION THROUGH THE ACTION OF THE TARGET.

It has been already explained that there is a pressure-zone, A BDC,
2 , about th(i) 1lin];e oft.’ ﬁlre, when the bullet pene-
Al trates a block of clay: the projectile strikes
——;mi the.adja‘cent particles, w%lich in turn react on
p: ;;  their neighbours. There is consequently a con-
‘ siderable reaction on the bullet itself, which
tends to deflect it from its course. If the bullet is fired from a smooth
bore, there is no great deflecting tendency, if the mass of the clay is
very great, and if it is homogeneous. In such a case, the pressures
would be distributed symmetrically about the trajectory.

But with rotating bullets, things are different. Suppose the *
rifling to be right-handed: then looking at it from behind, the bullet
rotates clockwise: consequently a very slight initial obliquity of the
axis of the bullet with respect to the tangent to the trajectory, or
even a lack of complete homogeneity in the clay, would suffice to
produce very marked oscillations in the clockwise direction. If at the
moment of entering the clay, the tip of the bullet is very slightly
pointed upwards, the tip will be lifted by the resistance of the material
and then goes to the right. The bullet, as a whole, will then go
upwards, and afterwards turn to the right, if the mass of the clay is
sufficient in amount. The opposite directions of motion will hold, if
the tip is pointed downwards on entry. These effects have been often .
noticed with bullets and shells. Sometimes a boomerang-like path
has been observed within a target, and a bullet has been even known
to come out again on the side of entry.

But there are other causes besides rotation which may deflect; a
projectile ; a target, like a muddy bank,
may be struck on the one side, 5o that
the pressure-zone, ABDC, extends to
the surface, or even falls partially out-
side the body. Insuch a case the reaction
on the lower side of the projectile is
greater than that on the upper side. The bullet is therefore deflected
upwards, moving along the path of least resistance. With grazing
shots of this character, it is easy to understand that there may be a
considerable deflection: a shell striking the water in a more or less
horizontal direction may be deflected upwards from the surface, if the
velocity is sufficiently great in amount. '
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2. RICOCHETS.

A ricochet can also occur when the impact takes place at a
small angle with the surface of the object struck: the conditions
depend on the circumstances of the case. von Chrismar states that
French shells, with diameters of 10 ¢m, ricochet if the acute angle of
descent on a sandy surface is less than 10°: 32 em shells ricochet up
to angles of 28°: while on the Krupp firing range, 26 c¢m shells strike
the frozen ground at a distance of 1500 metres and then bound further
over distances of 8000 metres. von Chrismar further reports that
shells ricochet from the surface of a smooth sea, if the angle of descent
is less than 25°: mostly they experience a considerable lateral deflee-
tion. French 32 cm shells make in this way a number of ricochets,
the total ranges of which may measure from 1500 m to 11000 m.
Ramsauer has made some interesting CE
tests on this point. He fired some brass H 8

balls, weighing 5:85 grammes,and 11mm —= = /1:

in diameter, from a smooth bore with il _'Lﬂ/ﬁ')—
velocities between 621 and 625 m/sec. oF

The angles of impact were different in the various cases: the firing
took place into a large tank of water. The angle at which the
bullet emerged was measured, and also its velocity. If the angle of
impact, &, was greater than 7°, the bullet did not come to the surface.

The results were as follows.

f

a=1° 1" 237, B=1° 0 177, a—B=1 6"
158 12 154 17 3 55
3 2 55 2 51 34 11 21
4 0 34 347 32 13 2
5 0 49 439 12 21 37
559 40 533 51 25 49
640 18 552 3 48 10

The figures show that 3 is always less than a. This explains why
" a number of springs on the surface of the water are possible, and why
the well-known phenomenon with flat stones takes place.

The trajectories beneath the surface of the water were examined
by means of vertical screens, placed at suitable distances below the
surface. Bircher’s procedure was used to prove that the screens were
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ruptured by the passage of the balls. Paths, similar to 40B, have
often been observed with shells, when they strike a soft grass-grown
surface.

The second part of the trajectory, OB, is therefore quite indepen-
dent of the first part, OA. If a thin layer of air, CDFE, were supposed
to exist at the lowest point, O, this would not affect the matter in
any way. This is in agreement with what has been said about firing
horizontally through water at no great distance below the surface.
Ramsauer also showed that a similar lifting of the bullet takes place
when it is fired through 10 parallel lead plates, 3 mm thick, placed
vertically at distances of 25 cm, passing horizontally at a maximum
distance of 9 mm from their upper edges.

The velocity of egress was measured for different angles of impact
by Pouillet’s procedure : thus we have

a=1°2"13" | 2° 0" 44" 6° 231" | 6° 49’ 27”7
ve= 6083 5715 2215 675 m/sec.
A In these tests v, = 6253 m/sec. If a=7°,
s the velocity of the projectile is diminished

"—  to such an extent by the resistance of the
- - water, that it no longer rises to the surface,
but continues to fall downwards along the path OGII.
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NOTES AND APPENDIX

The following is a list of the most important technical publications on ballis-
tical subjects :

Archiv fiir die Offiziere der kgl. preuss. Artilleric und des Ingenieurkorps, Berlin,
Bd. 1-68 (1837-1870).

Archiv fiir die Artillerie- und Ingenieuroffizierc des deutschen Reichsheeres,
Derlin, Bd. 69-104 (1871-1897). This publication has been discontinued
since 1898.

. Artilleriskii Journal, Petrograd, 1839,

Allgemeine schweizerische Militarzeitung, Basle, 1863.

Artilleristische Monatshefte, Berlin, 1907,

Artilleri Tidskrift, Stockholm,

La Corrispondenza, Livorno, 1899. (Discontinued.)

Journal of the United States Artillery, Fort Monroe, Virginia, 1892.

Kriegstechnische Zeitschrift, Berlin, 1898.

The Kynoch Journal, Birmingham.

| Memorial de Artilleria, Madrid, 1844.

Mémorial de PArtillerie de la Marine, Paris.

Mémorial des poudres et salpétres, Paris.

- Mitteilungen des k. k. Geniecomités iiber Gegenstinde der Ingenieurkunst und
des Kriegswesens, Vienna, from 1870.

Proceedings of the Royal Artillery Institution, Woolwich.

Revue d’Artillerie, Paris, 1873.

" Revue de Parmée belge, Lidge, since 1890.

Revue maritime et coloniale, Paris, 1872.

Rivista d’ Artigleria e Genio, Rome.

Rivista maritima, Rome, 1868.

Schuss und Waffe, Versuchsstation Neumannswalde-Neudamm.

Zeitschrift der deutschen Versuchsanstalt fiir Handfeuerwaffen, Berlin-Halensee.

Zeitschrift fiir das gesamte Schiess- und Sprengstoffwesen, Munich, 1906.
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TEXT-BOOKS

F. Bashforth, Mathematical Treatise on the Motion of Projectiles, London, 1873;
supplement, 1881. (Referred to as Bashforth.)

Handbuch der Waffenlehre, 3rd edition, Berlin, 1912.

8. Braccialini, Uber die praktische Losung der Probleme des Schicssens, trans-
lated into German by von Scheve, Berlin, 1884.

F. Brandeis, Der Schuss, Erkldrung der den Schusserfolg beeinflussenden Um-
stiinde und Zufilligkeiten, Vienna and Leipsic, 1896.

A. von Burgsdorff and von Recklinghausen, Tafeln zur Flugbahnberechnung von
Infa,nterlegeqchossen Berlin, 1897.

P. Charbonuier, Traité de balistique extérieure, Pans, 1904. (Referred to as
Charbonnier 1.)

P. Charbonnier, Balistique extérieure rationnelle, in 3 parts, Paris, 1907, a portion
of the Encyclopédie scientifique, Toulouse. (Charbonnier 2 and 3.)

P, Charbonnier, Manuel de balistique extérieure, Paris, 1908.

von Chrismar, Leitfaden fiir den Unterricht in der Ballistik, vol. 1. Charlotten-
burg, 1904.

J. Didion, Traité de balistique, Paris, 1848; second edition, 1860. (Referred to
as Didion.)

J. Didion, Lois de la résistance de Dair, Par:s, 1857. Calcul des probabilités
appliqué au tir des projectiles, Paris, 1858.

0. von Eberhard, Das Wesen der modernen Visiervorrichtungen, Berlin, 1908.

0. von Eberhard, Die Waffentechnik in ihrer Beziehung zur Optik, published in
Kultur der Gegenwart, 1v. 12 (1913), Leipsic. ‘

F. Fasella, Tavole balistiche secondarie, Genoa, 1901,

‘W. Gross, Die Anwendung der Wahrscheinlichkeitslehre auf dem Gebiete der
Schiesslehre, Berlin, 1912:

W. Gross, Die Berechnung der Schusstafeln, Leipsic, 1901.

A. Hamilton, Ballistics, Fort Monroe, Virginia, 1908, Vols, 1. and 11. on external
ballistics. .

P. Haupt, Mathematische Theorie der Flugbahnen gezogener Geschosse, Berlin,
1876.

J. P. G. von Heim, Beitriige zur Ballistik in besonderer Beziehung auf die Umdre-
hung der Artilleriegeschosse, Ulm, 1848. (Referred to as Heim.)

F. Hélie, Traité de balistique expérimentale. Exposé général des principales
expériences d’artillerie exécutées & Gavre en 1830-1866: 2nd edition, 2 vols,,
Paris, 1884. (Hélie.)

W. Heydenreich, Lehre vom Schuss und die Schusstafeln, 2 vols., Berlin, 1898 :
2nd edition, 1908. (Heydenreich.)

A, Indra, Graphische Ballistik, Vienna, 1876,

A. Indra, Ballistik der Handfeverwaffen, Vienna, 1879.

A. Indra, Synthetische Entwicklung eines allgemeinen Luftwiderstandsgesetzes,
Vienna, 1886.
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A. Indra, Neue ballistische Theorien, Pola, 1893.

J. M. Ingalls, Exterior Ballistics, New York, 1886,

J. M. Ingalls, Handbook of Problems in Direct and Indirect Fire, New York,
1890.

J. M. Ingalls, Handbook of Problems in Exterior Ballistics, Washington, 1000,
(Ingalls.)

J. Kozdk, Grundprobleme der Ausgleicharechnung nach der Methode der klcinsten
Quadrate, Vienna and Leipsic, 1907-1910. Geschossbewegung imn Vakuun,
Vienna and Leipsic, 1909.

Krause, Die Gestaltung der Geschossgarbe der Infanterie beimn gefechtsmissigen
Schiessen, Berlin, 1904.

J. de la Llave, Balistica abreviada, Madrid, 2nd cdition, 1894,

N. Mayevski, Traité de balistique extérieure, Petrograd, 1870. French translation
from the Russian, Paris, 1872. (Referred to as Mayevski.)

N. Mayevski, Uber die Losung der Probleme des dirckten und indirekten
Schiessens (Russian), Petrograd, 1882. German translation by Klussmann,
with an Appendix. F. Krupp, Ballistische Formeln von N. Mayevski nach
F. Siacei, together with Krupp’s Air-resistance Tables up to a velocity of
700 m, Berlin, 1886. (Referred to as Mayevski-Klussmann.)

N. Mayevski, Methode der kleinsten Quadrate und deren Anwendung auf das
Schiessen (Russian), Petrograd, 1881.

A. von Minarelli-Fitzgerald, Das moderne Schiesswesen, Vienna, 1901. (v. Mina-
rells.)

H. Miiller, Die Entwicklung der Feldartillerie in Bezug auf Material, Organisation
und Taktik von 1815-1892, Berlin, 1893.

Neithardt, Die Lehre vom Treffen beim Abteilungsfeuer der Infanterle Olden-
burg. (No date.)

V. von Niesiolowski-Gawin, Ausgewihlte Kapitel der Technik mit besonderer
Riicksicht auf militarische Anwendungen, 2nd edition, Vienna, 1908.

J. C. F. Otto, Mathematische Theorie des Ricochetschudses, Berlin, 1833.

J. C. F. Otto, Tafeln fiir den Bombenwurf, 1842. °

J. C. F. Otto, Hilfsmittel fiir ballistische Rechnungen, Berlin, 1859.

C. Parodi, Balistica esterna, published by E. Cavalli, Turin, 1901.

Pétry, Monographies de systémes d’artillerie, Brussels, 1910.

G. Piobert, Traité d'artillerie théorique et pratique, 3 vols., Paris, 1831-1859.

S. D. Poisson, Recherches sur le mouvement des projectiles dans I'air, Paris,

1839.

S. D. Poisson, Formules relatives aux effets du tir sur les différentes partics de
son affit, 2nd edition, Paris, 1838.

H. Résal, Mécanique générale, vol. 11 Paris, 1873. (Résal.)

H. Rohne, Studic iiber den Schrapnelschuss der Feldartillerie, Berlin, 1894.

H. Rohne, Schiesslehre fiir die Feldartillerie, Berlin, 1895.

H. Rohne, Schiesslehre fiir die Infanterie, Berlin, 1896 and 1906.

H. Rohne, Neue Stadie iiber den Schrapnelschuss, Berlin, 1911.

G. Ronca, Manuale del tiro, Livorno, 1901.

G. Ronca, Manuale di balistica esterna, Livorno, 1901.

(3, Ronca and A. Bassini, Balistica esterna, Livorno, 1901.
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G. Ronca and G. Pesci, Abbachi per il tiro: abbachi generali della balistica,
Livorno, 1901.

A. Rutzki, Theorie und Praxis der Geschoss- und Ziinderkonstruktionen, Vieuna,
1871, (Rutzke.)

N. Sabudski, Uber die Losung der Probleme des indirekten Schiessens und iiber
den Winkel grosster Schussweite (Russian), Petrograd, 1888: supplement,
1890,

N. Sabudski, Aussere Ballistik (Russian), Petrograd, 1895, - (Sabudsk:.)

N. Sabudski, DieWahrscheinlichkeitsrechnung, ihre Anwendung auf das Schiessen
und auf die Theorie des Einschiessens. German translation by von Eberhard,
Stuttgart, 1906.

P. de St Robert, Mémoires scientifiques, 2 vols., Turin, 1872-1874. (St Robert.)

F. Siacci, Corso di balistica, 3 vols., Rome, 1870-1884: 2nd edition, Turin, 1888.
French translation under the title of Balistique extérieure, Paris, 1892.
(Siacci.)

F. Siacci, Balistica e practica, Giorn. d’ art. e gen. 1880. German translation by
Giinther under the title of Ballistik und Praxis, Berlin, 1882.

M. de Sparre, Mouvement des projectiles oblongs dans le cas du tir de plein fouet,
Paris, 1875.

M. de Sparre, Sur le mouvement des projectiles dans lair, Paris, 1891.

Textbook of Gunnery, London, 1902.

E. Thiel, Das Infanteriegewehr, eine ballistisch-technische Studie, Bonn, 1883.

J. M. de Tilly, Balistique extérieure, Ghent, 1875.

E. Vallier, Balistique expérimentale, Paris, 1894. (Vallier.)

E. Vallier, Balistique extérieure, a portion of the Encyclopédie scientifique des.
Aide-Mémoire, Paris. (No date.)

E. Vallier, Reference to Ballistics in the Encyclopédie des sciences mathématiques
(Paris, Gauthier-Villars), edited by J. Molk, yol. 1v. section 21, Paris-Leipsic,
1913.

R. Wille, Waffenlehre, 1st edition, Berlin, 1896: 2nd edition, 1900: 3rd edition,
1905. ( Wille.) * .

A. Witting, Soldaten-Mathematik, vol. xx11. of the Mathematische Bibliothek,
edited by W. Lietzmann and A. Witting, published by Teubner, Leipsic,
1916.

N. von Wuich, Lehrbuch der Zusscren Ballistik, Vienna, 1886. ‘(Referred to as
von Wuich.)
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NOTES ON THE VARIOUS SECTIONS

§§ 4 to 6. Tilting of the trajectory in a vacuum: A. ven Obermayer, Vienna,
Ber. 110 (1901), p. 365; Charbonnier, 1, p. 278; A. Weigner, Mitt. @b, Gey. d.
Art.- w. Gen.-Wes. 1890, p. 1. With regm'd to the trajectory in a vacuum, see
also V. A. von Sinner, Lekrb. d. Ball. 1st part, Berne, 1834; P. G. Tait, Froceed.
Roy. Soc. of Edinb. 7 (1885), p. 107; W. Walton, Quart. Journ. of Pure and
Appl. Math. 10 (1869), p. 72; Scheer de Lionastre, Théorie bul. Ghent, 1827,
specially p. 20; E. Lampe, Boltzmann-Festschrift, Leipsic, 1904, p. 215. With
reference to the law in § 6 on the curvature of the earth, see C. Cranz, Kompend.
d. Ball. Leipsic, 1896, p. 33 ; see also J. Kozdk, Geschossbewequng im Vakuum,
Vienna and Leipsic, 1909. Barisien states certain propositions with reference
to the parabola-groups, which have no great ballistical significance, in Nouzelles
Aanales (3), 6 (1887), p. 372: also .G. Leinekugel, in the same publication (3), 14
(1895), p. 112; J. Schatte, Ariegstechn. Zeitschr. 14 (1911), p. 450 ; J. Schmidt,
“Mitteil. @b, Geg. d. Art.- u. Gen.-Wes. 1910, p. 879; F. Kiilp, Archiv d. Math. u.
Phys. (23), 3 (1914), p. 244.

Ricochet in a vacuum : Bordoni, Memorie della Socteta italiana, 18186, vol. xvIL
1, p. 191 ; E. de Jonquiéres, C. R. vol. xcviL p. 1278 ; Lombard, TAdorie du tir
& ricochet, Brussels, 1841 ; Persy, Cours de balistique, Mectz, 1827-1831, p. 61 ;
Otto, Math. Theor. d. Ricochetschusses, Berlin, 1844 ; Radowitz, Arch. f. Art.- u.
Ing.-Of. 1 (18358 p. 41 : 5 (1837), p. 248 : 17 (1845), p. 181 : 24 (1849), p. 185 :
- 28 (1850), pp. 153 and 208.

§§ 8 and 9. On questions of air-resistance in general, consult d’Alembert,
Traité de Végquilibre et du mouvement des jluides, Paris, 1744 ; J. V. Poncelet, In-
troduction & la mécanigue industrielle, Brussels, 1839, p. 522; J. Didion, Lois de
la résistance de Uair, Paris, 1857 ; E. Vallier, Rev. dart. 26 (1885), pp. 226 and
324 ; A. Indra, Mitt. iib. Geg. d. Art.- u. Gen.- Wes. 1886, p. 1; von Wuich, pp. 49
and 101 ; C. F. Page, De la résistance de Pair, Paris, 1878, and Rev. dart. 11 (1878),
pp. 254, 345, 457, 561 : 13 (1879), p. 531 : 14 (1879), p. 38 : 15 (1879), p. 128 ;
also L. A, Thibault, Récherches expérimentales sur la résistance de Dair, Paris, 1826,
pp. 11, 62, 128; F. Silvestre, Rev. dart. 18 (1881), p. 236; M. Prehn, Jber die
bequemste Form des Luftwiderstandsgesetzes, Berlin, 1874; N. Mayevski, St Peters-
burg Bull. de P Acad. (class. de phys. et math.), 17 (1858), p. 337 and 27 (1881), p. 1;
Pfister, Archiv fiir Art.- . Ing.-Of. 88 (1881), p. 489 ; Journde, Rev. dart. 49 (1897),
p. 293; Hélie, 2, p. 150 ; Sabudski, 1, p. 55, and drck. f. Art.- u. Ing.-Off. 102 (1895),
p- 18 ; N. Sabudski, Petersh. Art. Journ. 1894, 4, p. 299 ; F. Chapel, Paris, C. R.

" 119 (1894), p. 977 ; F. Chapel, Rev. dart. 45 (1895), pp. 119 and 453 ; Denecke,
Kriegstechn. Zeitschr. 2 (1899), p. 482 ; L. Mach, Zettschr. f. Luftschifffakrt, 1896,
p- 129; L. Prandtl, Handwirterbuch der Naturwissenschaften, 4 (1913), p. 558 and
p. 129; Didion, p. 53; J. Wolf Barry, Engineering, 2, 66 (1898), p. 408: Finster-
walder, Encylclop. d. matk. Wiss. 1v. 17, p. 161; F. von Zeppelin, Zeitschr. f. Luft-
seheff. 15 (1896), p. 172.

Digitized by Microsoft ®



460 ~ Notes on the various sections

‘With reference to the change in the function for the resistance of the air in the
neighbourhood of the velocity of sound, see N. Mayevski, Petersb. Bull. de P Acad.

27 (1881), p. 1; A. Indra, Mitz. @b. Geg. d. Art.- u. Gen.-Wes. 1886, pp. 1-80;
R. Emden, Habilit. Schrift. techn. Hochsch. Munich, 1899, p. 94, and Ann. Phys,
Chem. 2, 69 (1899), p. 454 ; E. Thiel, drch. Art. Ing.-Of. 94 (1887), p. 492.

On air waves, see E. Mach, Wien. Ber. 77 (1878), p. 7: 78 (1878), p. 819 : 95-
(1887), p. 765 : 97 (1888), p. 1045: 98 (1889), p. 41: 98 (1889), p. 1257 : 101 (1892),
p. 977: 98 (1889), p. 1318. On the stream lines of bodies moving through fluids,
and on making these lines visible, with their photographic record, see the Jakrbuch
der Scliff bautechn. Gesell. for 1904, 1905 and 1909. Also F. Ahlborn, Physikal. |
Zeitschr. 11 (1910), 5, p. 201, and Zeitschr. d. deutsch. Luftfahrigesellsch., Jahrgang
16, Ausgabe B, 5 (1912), p. 98. ’

For theoretical investigations, see Isaac Newton, Philosophiae natur. principia,
lib. 2, sect. 7, 1726 ; J. C. E. Schmidt, Theorie des Widerstandes der Luft bei der
Bewegqung der Korper, Gottingen, 1831. Also J. C. T, Otto, Zeitschr. Math. Phys.
11 (1866), p. 515, and Mitt. iib. Geg. d. Art.- u. Gen.- Wes. 1879, p. 481 ; A, Schmidt,
Programm des Stuttgarter Realgymnastums, 1878 ; E. Vallier, Rev. d’art. 26 (1885),
pp- 226 and 324; Résal, 2, p. 1874 ; O. Mata, Rev. de larmée belge, 19 (1895), p. 85; 4
A. Bagsani, La corrisp. 1 (1900), p. 299 ; P. Vieille, Paris, C. R. 130 (1900), p. 235 ; }
E. Okinghaus, Ween. Ber. 109 (1900), pp. 1159 and 1291, and Monatsh. fir Mathem..
u. Phys. 15 (1904), p. 150. See also H. von Helmholtz, Vorlesungen iiber theore- I
tische Physik, vol. 1. Leipsie, 1898, p. 31 ; E. Jouguet, C. R. 132 (1901), p. 677 :
145 (1907), p. 500 ; P. Haupt, Artill. Monatshefte, 1910, 1. p. 249, and 1L p. 241 :
1911, 1. pp. 321 and 401, and 11. 62, p. 91: 1912, 62, p. 91; V. Kobbe, ditto, 1911,
1L 55, p. 22: 65, p. 383: 58, p. 283: and 1912, 65, p. 382 ; Engelhardt, ditto, 1911,
52, p. 245, and 1912, 65, p. 383 ; C. Cranz, ditto, 1911, 11. 56, pe 85, on empirical
laws of air-resistance ; H. Lorenz, Ballistik, die mechanischen Grundlagen der
Lehre vom Schuss, Zeitschr. d. Vereins deutsch. Ing. 1916, p. 625 ; H. Lorenz,
" Beitrag 2. Theor. d. Schiffswiderstands, ditto, 1907, p. 1824 ; P, Vieille, Mémor. des
poudr. et salp. 10 (1899-1900), p. 177, and 10 (1900), p. 255 ; J. Hadamard, Lecons
sur Lo propagation des ondes, Paris, 1903, p. 206 ; G. Zemplen, Encyklop. d. mathem.
Wissensch. 1v. 19, 12, p. 315; W. Lanchester, derodynamics, London, 1907 ; A. §
Kriloff and C. H. Miiller, £Zncyklop. d. mathem, Wissensch. Tv. 22, p. 572 ; M. Jéger, |
Grapkische Integrationen in der Hydrodynamik, Dissertation, Gottingen, 1909;
G. Ricei, Rivista & artigl. e genio, 33 (1913), vol. 1. p. 366 ; M. de Masson d’Autume,
Mémorial de Uartill. Navale, 3, T (1913), 22, 2nd part, p. 3. The law of air-resist-
ance is discussed in Sommerfeld’s work on the gyroscope, F. Klein and A. Som-
merfeld, Theorie des Kreisels, Leipsic, published by Teubner, 1910, 1v. section C [
on ballistics, No. 7 ; P. Riebesell, drchiv f. Mathem. u. Phys. 25 (1916), vol. 11
p. 103. See article on ballistics in the Encyclop. des sctences mathém. edited by
J. Molk, Paris, and published by Gauthier-Villars, vol. 1v. 21.

§§ 10 and 11. Empirical laws of air-resistance : A. Indra, Mitt. iib. Geg.d. Art.- ’.
u. Gen.- Wes. 1886, pp. 1-80 ; E. Okinghaus, Wien. Ber. 108 (1899), p. 1559, ]
and 109 (1900), p. 1275 ; Denecke, Kriegstechn. Zeitschr. 2 (1899), pp. 426, 474 and
482, with reference to zone-laws up to velocities of 500 m, based on German ex-}
periments ; C. Chapel, C. R. 120 (1895), p. 677, and 119 (1894), p. 997; W. Gross,
Schweizer. Zeitschr. fiir Artill. u. Gen. 39 (1903), p. 409; W. von Scheve, Kriegs-
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techn, Zeitsckr. 10 (1907), p. 14 on the law of Chapel-Vallier, On the Mayevski-
Sabudski zone-laws, see Mayevski, p. 41 (1872) ; Sabudski, DPetersburg Art, Journ.
1894, 4, p. 299, and Klussmann, Arck. f. Art.- u. Ing.-Of. 102 (1895), p. 18. For
Sincei’s law, see fiv. & artigl. e gen. 1896, vol. L pp. 5, 195, 341, and Arck. f.
Art.- w. Ing.-Off. 103 (1896), pp. 5, 195 and specially p. 341; K. Becker and C.
Cranz, Artill. Monatshefte, 1912, 69, p. 189,and 1912, 71, p- 833; O. von Eberhard,
ditto, 1912, 69, p. 196 ; J. H. Hardcastle, Arms and FExplosives, 1013, 249, vol. xx1.
p- 86, translation of the paper by K. Becker and C. Cranz; M. Thiesen, Ann.
Phys. Chem. 2, 26 (1885), p. 314 ; von Léssl, Laws of air-resistance, Vienna, 1896,
Patent for smoke-emitting shells, by Semple, D. R. P. 190,051, class L 72 d,
Aug. 26,1905. H. Rohne, Artillerist. Monatshefte, 1908, p. 347, and Deutsch. Waffen-
zeitung, 1908, p. 17; Olker, Zedtschr, f. d. ges. Schiess- u. Sprengstoff- Wesen, 11
" (1916), pp. 145, 167 and 185.

For projectiles showing lights, see the German patents, class 72 4, group 19,
Nos. 242,554 : 265,383 268,324 : 271,005: 272,070: 272,115, If smoke-cmitting
shells or light-emitting shells are used for tests on air-resistance, care must
be taken to see that the trajectory is not affected by the devices that are em-
ployed. '

For the measurement of air-resistance, see J. Didion, Lois de la résistance de
U'air, Paris, 1857, and C. E. Page, D¢ la résistance de Pair, Paris, 1878, For the
determination of laws of air-resistance from experiment or by means of the method
of least squares, see Siacci, p. 313 ; Sabudski, Petersb. Art. Journ. 1894, 4, p. 209:
1892, 6, p. 601, and Klussmann, Arck. f. Art.- u. Ing.-Of. 97 (1890), p. 546 ; Siacci,
Riv. d' art. e gen. 1889, vol. 111. p. 227, and 1891, vol. I. p. 199; Arch. f. Art.- u.
Ing.-Of. 99 (1892), p. 172; J. Schatte, Ariegstechn. Zeitschr. 16 (1913), pp. 1, 57,
and 111; A. Hamilton, Journ. of the United Stat. Artill. 24 (1905), pp. 31 and 99,
and 30 (1908), p. 363 ; S. Finsterwalder, article on aerodynamics in Encykl. d.
mathem. Wissensch. Leipsic, 1903, vol. 1v. 17, 4, p. 163 ; C. F. Close, Proc. Roy.
Are. Inst. 1905, January ; G. Greenhill, Journ. of the Roy. Artill. 1906, February,

* and 1909, February, p. 473 ; C. E, Wolff, ditto, 1908, April.

§§ 12 and 13. Components of the force of air-resistance when the shell lies
obliquely, and tbe calculation of form-values: Mayevski, p. 40; Mayevski-Kluss-
mann, p. 58; St Robert, 1, pp. 251-276; Rutzki, p. 68; Siacei, p. 378; M. de
Sparre, Sur le mouvement des projectiles dans Uair, Paris, 1891, p. 64; von Wuich,
pp- 70-101, specially p. 92 with table; Cranz, Zeitschr. Math. Phys. 43 (1898),
Pp- 169 and 133 ; E. Kummer, Berl. Abk. 1875, p. 1, with experimental appendix,
1876, p. 1; Gauthier, Ann. é. norm. 5 (1868), pp. 7-65; G. Wellner, Zeitschr. f.
Luftschyff. 12 (1897), p. 237, and Zeitschr. d. dsterr. Ing. u. Arch.- Ver. 45 (1893),
pp- 25-28; H. Résal, Nowv. ann. 2, 12 (1873), pp. 561-565; J. M. Ingalls, Journ,
of Un. Stat. Art. 4 (1895), p. 191; A. von Obermayer, Wien, Ber. 104 (1895),
p. 963 ; Duchemin, Mémor. de Dart. marine, 5 (1842), p. 65; P. Touche, Kev. dart.
36 (1890), p. 131; E. Vallier, p. 10, and Rev. dart. 36 (1890), p. 160; Ingalls,
Journ. of Un. Stat. drt, 4 (1895), p. 208, and Mitt. ib. Geg. d. Art.- u. Gen.- Wes.
1896, p. 411 ; Siacei, p. 7; Sabudski, 1, pp. 57-90; Lekre vom Schuss by Heyden-
reich, 1908, I11. p. 116; A. Hamilton, Journ. of the Un. Stat. Art. 1908, vol. 1L and
Artillerist, Monatshefte, 1909, 26, p. 133 ; A. Frank, Zeitschr. d. Ver. Deutsch.
Ing. 1906.
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The rules governing the construction of models are discussed by H. von
Helmholtz, Wissensch. Abhandl. Leipsic, 1882, 1. p. 168; H. Lorenz, Zeitschr. d.
Ver. Deutsch. Ing. 1907, p, 1824 ; V. von Niesiolowski-Gawin, dusgew, Kapitel der
Technik, Vienna, 1908, p. 326.

§ 14. Regarding the best shape for the tip of the shell, see A. M. Legendre,
Paris, Mém. de P Acad. 1788, pp. 7-37; Q. von Lamezan, Adrch. f. Art.- u. Ing.-Of.
87 (1880), p. 485 ; Rutzki, pp. 30-51; F. August, J. f. Mazh. 103 (1888), pp. 1-24,
and Arch. f, Art.- w. Ing.-Of. 94 (1887), p. 1 ; von Wuich, 1, p. 128; R. Benzivenga,
Riv. d art. e gen, 1897, vol. 111. p. 123 ; B. von Lefévre, Rev. dart. 57 (1900), p. 221;
A. Bassani, La corrisp. 1 (1900), p. 485; L. Decepts, Rev. d’art. 57 (1901), p. 425,
and La corrisp. 2 (1901), p. 63; E. Armanini, 4nn. dimat. 3,4 (1900), pp. 131-149;
E. Lampe, Berlin. Verhandl. d. deutsch. phys. Ges. 3 (1901), pp. 119 and 151;
Kneser, Arch. . Math. u. Phys. (3), 2 (1902), p. 267; L. Decepts, Rev. dart. 57" }
(1900), p. 221 ; Lacroix, Zraitd du calcul diff. et intégr. 2nd edit. Paris, 1814, part 2,

p. 791; S. von Kobbe, drzill. Monatshefte, 1911, 1. 58, p. 283; M. de Masson
d’Autume, Memorial de Vartill. nav. séries 3, vol. vIr. (1913), 22, p. 481 ; Finster-
walder, Encykl. d. math. Wissensch. 1v. 17, footnote 90.

Some shells taper at the rear, and are more or less torpedo-shaped. These have
been examined by d’Alembert, Piobert, Dreyse, and Whitworth ; they include the
German D-shell and the Z-shell. See also Zeitsckr. f. d. ges. Schiess- u. Spreng-
stoffwes. 5 (1910), No. 9, pp. 161-163, and Selter, Zeitschr. f. d. ges. Schiess- u
Sprengstoffwes. 10 (1915), pp. 125 and 142. For pointed shells, including those of
the torpedo type, see Ayrolles, Rev. dartill. 38 (1910), vol. LXXV. pp. 214 and 274
38 (1910), vol. LXXVIL pp. 98, 148, and 275: 39 (1910-1911), vol. LXXVIL p. 356.

§ 15. See observations of the meteorological station in Bavaria, published in
Munich in 1907, Beebliitt. zu d. Annal. d. Physik (1908), p. 558: during the lowest *
3000 m, the temperature decreases at the rate of 0-57 degrees Centigrade y
per 100 m; at a height between 6 and 8 km, the temperature decreases by
0-71 degrees Centigrade per 100 m; at heights between 9 and 13 km, the tempera-
ture is constant at values between —48° and —60°. See also §111 and P. Char-
bonnier, Traité de balistique extérieure, Paris, 1904, p. 329. Also Linke, Adero-
nautische Meteorologie, Berlin, 1913 ; Fr. Fischli, deronautische Meteorologie, Berlin,
1913, For Siacci’s formula (II), see Balistique extérieure, Paris, 1892, p. 14.

P. Charbonnier proposes to apply the linear formula, given in the text, for the
decrease of atmospheric density with the height up to heights of about 2000 m, -
and has given a more complete formula. See also Balistique extérieure rationnelle,
Paris, 1907, pp. 12 and 13. According to Schubert’s figures (see § 111), the linear
formula holds at considerable heights. It is quite easy to use Schubert’s figures
directly.

§817t019. Some ranges are said to be longer than they would be in a vacuumn. ,
See von Minarelli, p. 37, and Darapsky, Arck. f. d. Ari.- u. Ing.-Of. 69 (1871),
p- 2566, and the disc-like shells, proposed by St Robert, 2, pp. 1 and 49, With |
regard to the conception of the sectional load see Galileo Galilei, Dialoghi deile
nuove screnze, Leiden, 1638, and Ostwald’s Klassiker der exakten Wzssensckaften
Galilei, Unterredungen, edited by A. J. von Ottingen, vol. x1. 24, 25. ]

St Robert first stated the general equations in § 17, and the propositions in
§19, viz. 1 to 8 and 11; the propositions 9 and 10 were added by Sabudski. See
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St Robert, 1, pp. 50 and 336, Tor. Mem. 2, 16 (1855), pp. 434 and 498; Mayevski,
pp- 52 and 71; Siaeci, 1, 1. 25, and for gimilar trajectories, p. 97; Sabudski, 1,
p- 118, and La corrigp. 1 (1900), p. 293 and 2 (1901), p. 3; Siacci, ir. & art. ¢ gen.
1901, vol. L. p. 287, and vol. 11 p. 21; M. de Brettes, Paris, C. /. 67 (1668), p. 896 ;

. 68 (1869), p. 1336; 69 (1870), pp. 394 and 1239, For the proof of proposition 3,

seo Hjalmar Aner, 4rtill. Monatshefte, 1916, No. 118, p. 147.

The following theoretical discussions refer to the angle of departure, corre-
sponding to the maximum range: F. Astier, Zev. d'art. 9 (1877), p. 313. Ho arrives
at the result that it depends on the law of air-resistatice as to whether the angle
is greater or less than 45°, Siacci, p. 42 and p. 393, and Mittel. ith, Geg. d. Art.- u.
Gen.-Wes, 1888, p. 49; E. Vallier, flev. d'art. 31 (1888), p. 362 ; Guébhard, Nouv.
ann. (2), 13 (1874), pp. 436-438; R. Radau, Paris, C. 1. 68 (1868), pp. 1032-1034 ;
M. de Brettes, Paris, C. 2. 66 (1868), p. 896; 68 (1869), pp. 1336-1338; 69 (1870),
pp. 394-397 and pp. 1239-1242; N, Sabudski, {ber die Losung des Problems des
indirekten Schiessens u. d. Winkel grosster Schussweite (Russian), Petrograd (1888),
p- 83; Klussmann, Arch. f. Art.- u. Ing.-Of. 96 (1889), p. 376. E. Vallier gives the
following rules : the angle is probably greater than 45° for a shell with a consider-
able sectional load, and a calibre greater than 24 em; but in the case of any shell
on which the air-resistance exercises a relatively great effect, the angle is less than
45°. There are, as yet, no sufticiently extensive practical tests on which to hase
conclusionsg, and figures with regard to bullets must be treated with great caution,
seeing that they very rarely depend on exact measurements,

With reference to Piton-Bressant’s results, see an anonymous article in the
Llev. dart. 8 (1876), p. 219, and G. Greenhill, Mem. de Uartill. navale, Paris, 1909, 2.

With reference to the integrability of the main equation, see J. L. d’Alembert,
Traité de Péquilibre et du mouvement des flutdes, Paris, 1744, p. 359; Siacei, C. R.
132 (1901), p. 1175, and 133 (1901), p. 381; Riv. & art. e gen. 1901, vol. 111. p. 5,
and vol. 1v. p. 5; P. Appell, Arck. der Math. . Phys. 3, vol. v. (1903), p. 177 ; E.
Ouivet, C. R. vol. cL. (1910), p. 1229 ; T. Hayashi, Giorn. di Matematiche di Batta-
glind, 3, vol. XxLIX. (1911), p. 231 ; C. Cranzand R. Rothe, Artill. Monatshefte, 1917,
who illustrate the procedure by two examples, and at the same time a method is
indicated by which the change in the density of the air can be taken into account
in a perfectly general way without using mean values.

The mechanical integration of the main equation by the planimeter is
described by L. Filloux, Rev. dart. 72 (1908), 6, p. 345, and see also E. Paseal,
1 miei integrafi per equaziony differenziali, Naples, 1914, published by L. C.
Pellerano.

§20. J. Bernoulli, dct. erudit. 1719, p. 216, or Collected Works, vol. 11. p. 394;
A. M. Legendre, Dissertation sur la question de balistique, proposée par U Académie
Roy. des Sciences et belles lettres de Prusse, Berlin, 1782, partially reprinted in
Journ. éeol. polyt. 4, Cah. 11 (1802), p. 204, and Journ. des armes spéciales, 1845,
pp- 537 and 600, and 1846, p. 32; C. G. J. Jacobi, J. f. Math. 24 (1842), p. 25, or
Collected Works, 4, p. 286. The matter is further investigated with the use of
elliptic integrals by A. G. Greenhill, Woolwick Roy. Art. Inst. Proc. 11 (1881),
pp- 131 and 589: 12 (1882), p. 17: 17 (1890), p. 181, and by Sabudski in the book
previously mentioned, and in his Awssere Ballistik, 1, 550 ; see also L. Austerlitz,
Wien. Ber. 84 (1882), p. 794. P. A. MacMahon’s tables are included in Greenhill’s

\
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paper. See also Th. Vahlen, Archiv d. Matk. u. Phys. 25 (1916), vol. 111, p. 209.
For similar trajectories see St Robert, Mémorr. scientifiques, Paris, 1872, 1. p. 313,
and F. Siacci, Bal. extér. Paris, 1892, p. 97; E. Roggla, Mitteil. b. Geg. d. Art.-u.
Gen.- Wes. 1908, p. 224.

§ 21. L. Euler, Berl. Ber. 1753, p. 348; 8. D. Poisson, Traité de mécanique,.

2 vols. 2nd ed. Paris, 1833. Tables are given by Didion in an appendix to his
Traité de balistique. With reference to Otto’s tables, see J. C. F. Otto, Tafeln fiir
den Bombenwurf, Berlin, 1842, Gebrauchsanweisung, p. 40; Valller, p. 111; Siacei,
Rivista & Artigleria e Gento, 1885, vol. 1. and Revue d’artillerie, 1885, vol, xxvI.
p- 431; S. Braccialini, Rev. d'art. 27 (1885), p. 237 ; Ingalls, Exterior Ballistics in
the Plane of Fire, New York, 1886, and Journ. of Un. St. Art. 51 (1896), pp. 52-74;
von Scheve, Arch. f. Art.- u. Ing.-Of. 92 (1893), p. 529; 93 (1886), pp. 97, 271;
103 (1896), p. 236 ; these articles give extensions of Otto’s tables. F. Mola, Riv.
d art. e gen. 1892, vol. 11L. p. 2563, and Arch. f. Art.- u. Ing.-Of. 100 (1893), p. 1.
Sabudski, 1, p. 239 and p. 252, takes into account the decrease of air-density with
the altitude, and Rev. d’art. 34 (1889), p. 427; 38 (1891), p. 46; Mayevski-
Klussmann, p. 34; A. Bassani, La Corrisp. 1 (1900), p. 116, and 1 (1900),
p. 275,

§ 22. Dashforth, p. 45; Mayevski-Klussmann, p. 28 ; Vallier, p. 49.

§ 22a. Didion, p. 162; Ligowski, Arck. f. Art.- u. Ing.-Of. 81 (1877), pp. 79,

163, 178, and 83 (1878), p. 203; also Neumann, Arck. f. Ari.- u. Ing.-Of. 6 (1838),
p. 213; 14 (1842), p. 49; 29 (1861), p. 93; J. H. Lambert, Berl. Abk. 1767, ‘
pp. 102-188; J. C. Borda, Paris, Hist. de I'Acad. 1769, pp. 247-271; G. F. von:
Tempethof, Berl, Abk. 1788-1789, pp. 216-299, separately printed as Der preussische
Bombardier, Berlin, 1791. Frangais’s work is mentioned by Didion, p. 168. Heim,
p- 205; von Pfister, Arch. f. Art.- u. Ing.-Of. 88 (1881), p. 489; St Robert, 1, i
p- 125 ; Denecke, Arck. f. Art.- w. Ing.-Of. 90 (1883), p. 231 and p. 405 ; von Zedlitz,
ditto, 103 (1896), p. 388.

With regard to the assumption of a definite curve-form with an experimental
determination of the coefficients, see M. Prehn, Ballistik der gezogenen Geschiitze,
Berlin, 1864, and Arch. f. Art.-u. Ing.-Of. 74 (1873), p. 189; A. Mieg, Theoretische
dussere Ballistik, Berlin, 1884; O. Dolliak, Mztt. #b. Geg. d. Art.- u. Gen.- Wes,
1879, p. 3 of the notes ; Hélie, 2, p. 267 ; ditto, p. 262, and Vallier, p. 186; see also '
Rev. dart. 8 (1876), p. 219; E. Okinghaus, Die Hyperbel als ballistische Kurve,
Arch. f. Art.-w. Ing.-Off. 100 (1893), p. 241, with other articles between 1894 and *}
1896 ; F. Chapel, Paris, C.R. 120 (1895), p. 677; J. Stauber, Mitt. ib. Geg. d.
Art.- u. Gen.- Wes. 1897, p. 118, and 1909, p. 575; R G. Fernandez, Jakrbiicher f. N
d. deutsche Armee u. Marine, 1907, 1. p. 206 ; F. Affolter, Allgemein. Schweiz. Mili-
tdrzeitung, 1905, 52, p. 424, and 1906, 9, p. 67; P. Haupt, Artill. Monatshefte, 1915,
11. Nos. 103-104, p. 1; C. Veithen, Artill. Monatshefte, 1917. .

§23 J.C Borda, Paris, Hist. de PAcad. 1769, pp. 247-271, and Journ. des’
armes spéciales, 1846, p. 49; Besout, Mouvement des projectiles, Paris, 1788, pp.
138-197; Legendre, Dissert. sur lo question de balistique proposée par Uacddémie
roy. des sciences, Berlin, 1782: partly reprinted in the J. éc. polyt. 4, Cah. 11 (1802),
p- 204, and Journ. des armes spéciales, 1845, pp. 537 and 600, and 1846, p. 32;
Didion, p. 169 and p. 168; Didion, p. 59; St Robert, Mémoires scientifiques, I.:
Paris, 1872, p. 119 and p. 124; Siacci, Riv. &’ art. e gen. 1897, vol. 1v. p. 5; von,
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Wuich, p. 215, and Mt b, Geg. d. Art.- u. Gen.- Wes, 1894, p. 424, and 1902,
pp. 651 and 893 ; R. v. Portenschlag-Ledermayer, ditto, 1903, p. 563.

For the method, described as Siacei 1, see Rev. d'art, 17 (1880), p. 45.

For the method, described as Siacci I1, seo Siacci, Balistique extérieure, Paris,
1892, p. 34, and flev. d'art. 27 (1886), p. 315 ; also Heydenreich, Lekre vom Schuas, -
1st ed. Berlin, 1898, 2, p. 90: for value of 8, see Siacci, p. 36, and Kiv. d’ art. e gen.
1896, vol. I. p. 341, and 1897, vol. 1v. p. 5.

For Vallier's method, sce Vallier, p. 45 ; Sabudski, Rev. d’art. 34 (1889), p. 427:
20 (1886-87), p. 11: 36 (1890), pp. 42 and 153: 37 (1890), p. 273: Balistique ex-
téricure (a portion of the Lncycl. scientif. des Aides-Mémoire, Paris, no date), and
Balist. expériment. Paris, 1894; E. Vallier, Artill. Monatshefte, 1912, No. 70, p. 253,

P. Charbonnier’s method is described in his Traité de bulistique extérieure,
ond ed. 1904, p. 221; S. Takeda, Artill. Honatshefte, 1914, 89, p. 321, which con-.
nects the procedures of Didion and Siacci; J. Schatte, Ariegstechn. Zeitschr. 12
(1909), 9, p. 416; G. Bianchi, Riv. & art. e gen. 27 (1910), vol. L p. 175,

§24. J. Didion, Traité de bulistique, Paris, 1848 and 1860 ; Paul de St Robert,
Mémoires scientifiques, vol. 1. Balistique, Paris, 1872; N. Mayevski, Traité de bal.
extér. Paris, 1872.

§§ 26 and 26. St Robert and N. Mayevski, as in § 24. Siacci, Balistique
extdrieure, Paris, 1892 and Ballistik w. Praxis, Berlin, 1882; J. Bernoulli, Acta
erudita, Leipsic, 1719, p. 1453 : Opera, 2, pp. 393-402 and p. 513 ; von Wuich, p. 199.
Siacci, pp. 86 and 455 ; Chapel, Rev. d’art. 17 (1881), p. 437, and 18 (1881), p. 484.

von Zedlitz, Arck. f. Artill.- u. Ing.-Off. 103 (1896), p. 388, and Mit. iib. Geg.
d. Art.- u. Gen.- Wes. 1898, p. 881 ; G. Ronca and A. Bassani, Riv. maritim. 1895,
p. 569; Siacci, Hiv. d' art. ¢ gen. 1896, vol. 11. p. 5; Ronca and Bassani, Riw.
marit. 1897, p. 217,

§27. Krupp’s earlier method, see Afitt. ib. Geg. d. Art.- u. Gen.- Wes. 1891, p. 1;
W. Gross, Die Berechnung der Schusstafeln, Leipsic, 1901; W. Olsson, Balluttle
tabeller for beregning af skydetabeller, Christiania, 1904 : Artill. Monatskefte, 1908,
p 112

§ 28. For Siacci 11, see § 23. F. Pouchelon, Rev. d’art. 26 (1885), p. 467;
W. C. Hojel, Rev. d’art. 24 (1884), p. 262; E. Vallier, p. 454, and Paris, C. R. 115
(1892), p. 648. For Siacci III, see F. Siacci, fiv. &’ art. e gen. 1896, vol. 1. p. 341 :

'Riv. & art. e gen. 1897, vol. 1v. p. 5 and Rev. d’art. 35 (1890), p. 493, and E. Fasella,

Tavole balistiche secondarie, Genoa, 1901 ; Parodi, Balistica esterna, Turin, 1901,
p- 105 and p. 314.

§ 29. Vallier, p. 45 and Rev. d’art. 29 (1888), p. 11; Sabudski, Rew. d’art. 34
(1889), p. 427 ; Vallier, Rew. d’art. 36 (1890), pp. 42 and 153, and 37 (1890), p. 273.

§ 30. P. Charbonnier, Traité de bal. extér. 2nd ed. Paris, 1904, p. 221: Manuel
de balistique extér. Paris, 1908,

§31. Graphical methods are to be found in J. V. Poncelet, Legons de mécanique

P industrielle, 2, Metz (1828), p. 55; Didion, p. 196; A. Indra, Graphische Bal-

listik, Vienna, 1876 ; C. Cranz, Zeitschr. Math. Phys. 42 (1897), p. 197. M. d'Ocagne’s
method is described by G. Pesci, Riv. marit. 1899, p. 113, and 1900, pp. 1-52 of
the appendix; G. Ronca, Réw. marit. 1899, and La corrisp. 2 (1901), p. 278; R. von
Portenschlag-Ledermayer, Mitt. iib. Geg. d. Art.- u. Gen.- Wes. 1900, p. 796, and
1904, p. 769; G. Ronca, Manuale del tiro, Leghorn, 1901, p. 296; G. Rouca and

C. 30
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G. Pesci; Abbachki per il tiro, and Abbacki generali della balistica, Leghorn, 1901 ;
Rothe, Artell. Monatshefte, 1911, 11. 59, p. 371; Narath, ditto, 1915, 1. p. 69;
Rothe, ditto, 1915, 102, p. 314; A. Nowakowski, Mitieil. ib. Geg. d. Art.- u. Gen.-
Wes. 1913, 7, p. 547, and 1913, 5, p. 383; Garbasso, iv. & art. e gen. 20 (1903),
vol. 11. p. 387; A. H. Barker, Graphical Calculus, London, 1908; J. E. Mayer,
Das Recknen in der Technik, Leipsic, 1908 ; R. Mehmke, Numerisches Rechnen,
Encykl. d. math. Wissensch. vol. 1. F, Leipsic, Teubner; A. Morley and W. Inchley,
Flementary Applied Mechanics, London, 1911 ; M. d’Ocagne, Coordonnées paralidles
et axiales, Paris, 1885: Traité de nomographie, Paris, 1899 : Colcul graphique et
nomographie, Paris, 1908; J. B. Peddle, T%e Construction of Graphical Charts,
New York, 1910; J. Perry, Praktische Mathematik, Vienna, 1903; M. v. Pivani,
Graphische Darstellung (Goschen), Berlin and Leipsic, 1914 ; F. Schilling, Jber die
Nomographie von M. d’Ocagne, Leipsic, 1900 ; L. von Schrutka, Theorie u. Prazis
des logarithm. Rechenschiebers, Leipsic, 1911; E. Schultz, Mathem. w. technische
Tabellen, edn. 2 B, Essen, 1911; Soreau, Contribution & la théorie et aux applica-
tions de la nomographie, Paris, 1901: Nouveaux types d’abaques, Paris, 1906.

§ 32. For Cauchy’s process, see P. de St Robert, Mémoires scient. 1. Paris,
1872, p. 160; Moigno, Legons sur le calcul diff. et tntdy. 11. 1844, leg. 26-28, and 33 ;
Coriolis, Journ. de Math. de Liouville, 2 (1837), p. 229 ; Lipschitz, Lekrd. d. Analysis,
11, (1880), p. 504; Picciati, Il polytechnico, Milan, 1893, vol. XLI pp. 493 and 537 ;
Runge, Math. Ann. 44 (1894), p. 437, and 46 (1895), p. 437; K. Heun, Jakrb. d.
deutsch. Math. Ver. 9 (1900), p. 111, and Zeitschr. f. Math. u. Phys. 45 (1500), p. 23 ;
Photogrammetric methods by O. Nowakowski, Mtt. ib. Geg. d. Art.- u. Gen.- Wes.
1912, 3, p. 262, ) , ,

§§ 35, 36 and 37. Cranz, Schuss u. Waffe, 2 (1909), 18, p. 413: Artill. Monats-
hefte, 1909, 30, pp. 412-415; Eckhardt, Areill. Monatsh. 1912, 11. 61, p. 64; A, von
Burgsdorff, Zeitschr., Schuss w. Waffe, 2 (1908-9), 8, p. 179 ; H. Rohne, ditto,
2 (1908-9), 7, p. 152; the maximum vertical ascent of a shell is discussed in
St Robert, Mém. scient. Paris, 1872, p. 43.

Didion’s process for calculating high-angle trajectories in various sections is
given in his Zrait¢ de balistique, Paris, 1860, p. 127. Also J. Schmidt, Mizz. 4b.
Geg. d. Art.- u. Gen.- Wes. 1908, p. 431 ; von Zedlitz, Artill. Monatsh, 1913, 79, p. 1
and 1914, 88, p. 274; F. E. Harris, Journ. of the Un. St. Artill. 23 (1905), p. 43;
P. Charbonnier, Rev. d’artell. 40, p. 79, p. 133: 79, March 1912, p. 357: 80, April
1912, p. 45; v. Portenschlag-Ledermayer, Afitt. ib. Geg. d. Art.- u. Gen.- Wes, 1911,
7, p. 616. :

§8 38-40. With regard to tilting the trajectory, see Heydenreich, Lekre vom
Schuss, Berlin, 1908, 1. p. 106; Gouin, Zev. dart. 35 (1907), p. 121; Percin, ditto,
19 (1882), p. 281 and 27 (1885), p. 118; A. von Burgsdorff, Zeitschr. f. d. ges.
Schiess.- u. Sprengstoff.- Wes. 1 (1908), 18, p. 332, and Schuss w. Wagfe, 2 (1907),
8, p. 179; Kerkhof, Artill. Monatsh. 1908, 13, p. 44. TFor Fernandez's and
Gonzalez's methods, see Jakrb. f. deutsche Armee u. Marine, 1905, December;
Kolarski, Mizt.ib.Geg.d. Art.- u. Gen.- Wes. 1906, p. 301 ; Pucherna, ditto, 1908, p. 809.

§ 41. E. Vallier, Balist. expér. Paris, 1894, p. 45 for the factor m. For the
change of the density of the air with the altitude, see Charbonnier, 7raité de bal.
extér. Paris, 1904, p. 329 ; A. Hamilton, Journ. of the Un. St. Artdll. 100, Dec. 1909,
p- 257; Cranz, Artll. Monatsh. 1909, 34, p. 241 for the accuracy of formula (23).
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§ 42. For the primary tables for Siacci III, sce F. Siacci, v d art. e gen.
1896, 1, p. 341: Riv. & art. e gen. 1897, 4, p. b: Rev. dart. 25 (1890), p. 493;
E. Fasella, Tavole balistiche secondarie, Genoa, 1901 ; F. Siacci, Bal. extér, 1892,
p. 454.

§ 45. For the effcct of small changes of #,, ¢, or ¢ on X seo Siacci, p. 105;
Vallier, p. 67; Denecke, Arck. f. Art.- u. Ing.-Off. 93 (1886), p. 1 and 94 (1887),
p. 226: Arch. f. Art.- w. Ing.-Off. 97 (1800}, p. 274; v. Pfister, ditto, 93 (1886),
p- 73; Rohne, Ariegstechn. Zeitschr. 3 (1900), pp. 129 and 201: 4 (1901), p. 326
Sabudski, Petrog. Art. Journ. 1889, 11, p. 941 ; Charbonnier, Traité de bal. ertér,
1894, p. 175.

On daily differences, Heydenreich, 1 (1st ed.), p. 53, and 2, p. 39; H. Rohne,
Kriegstechn, Zeitschr. 3 (1900), pp. 129, 201: 4 (1901), p. 326; v, Minarelli, p. 61,
and p. 53. Many figures are given by K. Exler, Zeitschr. f. d. ges. Schiess.- u,
Sprengstoff.- Wes. 1 (1906), pp. 107, 127, 376, 399; M. de Sparre, C. £. 161, p. 767:
162, pp. 33, 496. He gives a method of calculating the trajectory in zones, taking
into account the decreasc of air-density. The velocity of the shell thus passes
through a minimum and then through a maximum: finally it decreases again.
The assumptions about the gun, with which the tests were made, are merely
guesswork.

§46. Didion, p. 364; drck. f. Art.-u. Ing.-Off. 93 (1886), p. 45 ; von Minarelli,
p. 54; von Eberhard, Das Wesen der mod. Visiervorrichtungen der Landartillerie,
published by Krupp, Berlin, 1908.

§ 47. The effect of the wind is considered by Didion, 1, p. 311; von Wuich,
p. 474; Siacci, p. 113; Résal, 2, appendix, p. 409; Heydenreich, 1st ed. 1, p. 57;
Sabudski, p. 302; Denecke, Arck. f. Art.- u. Ing.-Of. 93 (1886), p. 1 and 94 (1887),
P.226; von Minarelli, p. 57 ; Rohne, Kriegstechn. Zeitschr. 3 (1900), pp. 129 and 201:
4 (1901), p. 326. Rohne calculates that with a mean wind-velocity of 5°5 m/sec
(Potsdam observations, 1893-1897), a horizontal breeze, coming obliquely forwards
at an angle of 45°, shortens a range of 2000 m by 31 m: the lateral drift with this
mean wind-velocity amounts only to about 18 m in a range of 2000 m. Rohue
considers that the daily changes in the weather exercise less effect than that
arising from errors of observation, even when wind and temperature act, as it
were, in the same direction, i.e. wind from behind and temperature high, or wind
from the front and temperature low. This is at any rate the case for rifles and
for distances less than 1000 m. With guns, the effects are more noticeable. For
a field gun with initial velocity of 465 m/sec, range 6000 m, p=18"11’, 0=28" 30,
Rohne finds that at — 22-5° C. the range is short by 1038 m. Heydenreich’s general
conclusions rest on the very extensive series of tests, carried out by the German
Artillery Committee. Krause’s experimental results, which were published in
the Kriegstechn. Zeitschr. 5 (1902), p. 433, show a very satisfactory agreement
between caleulated and observed values, in so far as temperature and barometric
pressure are concerned, The value of ¢'on p. 289 and of ¢ on p. 292 only apply
when the shell is at relatively low altitudes. At greater altitudes, it must be
remembered that these factors are proportional to the density of the atmosphere.
The expressions, representing their values, must therefore be multiplied by a
factor which takes the variation of air-density into account.

§ 48. As for the effect of the rotation of the earth, see G. Galilei, Dialog iiber

30—2
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das Welisystem, translated by Strauss, Leipsic, 1891, pp. 189-192; S8, D. Poisson,
J. ée. polyt. 15 (1832), p. 187; Recherches sur le mouvement des projectiles dans
lair, Paris, 1839, pp. 41 and 63; C. E. Page, Nouv. ann. 2, 6 (1867), pp. 96, 387,
481; St Robert, 1, p. 3567; F. Astier, Rev. d'art. 5 (1875), p. 272; R. Berger,
Uber den Einfluss der Erdrotation auf den freien Fall der Korper und die Flug-
baknen der Projektile, Coburg, 1876; J. Finger, Wien. Ber. 76% (1878), p. 67, and
R. Hoppe, Arch. d. Math. 64 (1879), p. 96; W. Schell, Theorie der Bewegung und
der Krifte, 1, p. 528; A. W. F. Sprung, drckh. d. deutsch. Seewarte, 1879, p. 27:
Deutsche meteor. Zeitschr. 1 (1884), p. 250: Arch. f. Art.- u. Ing.-Of. 103 (1898),
p- 13; Résal, 1, p. 107; Okinghaus, Wockenschrift f. Astron. 1891, p. 89, and
Arch. f. Art.- u. Ing.-Off. 103 (1896), p. 89; Sabudski, Petrog. Art. Journ. 1894, 2,
p. 120, and Rew. dart. 44 (1894), p. 467; A. von Obermayer, Mitt. iib. Geg. d. Art.-
u. Gen.- Wes. 1901, p. 707.

Budde, Allgemein. Mechanik, 1. p. 317, remarks that if a shell is fired vertically

upwards, it deflects to the north and not to the south until t=4%;’.

§ 49. As for the effect of the bayonet, see Fr. Hentsch, Ballistik der Hand-
Jeuerwaffen, Leipsic, 1873, where on p. 312 he says it was found with all rifles
that the following fact was true. If the rifle is so adjusted that the bullet hits
the bull’s eye when no bayonet is attached, then if the rifle is fired with the
bayonet on the right-hand side of the bore, the bullet will deviate considerably
to the left, even with short ranges. H. Weygand says the same in Das Schiessen
mit Handfeuerwalfen, eine vereinfachte Schiesslehre, mit bes. Beriicksichtigung des
deutschen Inf.-Gew. M. 71, Berlin, 1876. On p. 184 he says that experience has
shown that the bayonet causes a regular deviation to the opposite side to that
to which the bayonet is attached. See also von Stachorowski’s Unterricht in der
Wafenlehre an den Kgl. Kriegsschulen, 1876, p. 150 ; von Neumann, 1886, p. 121;
1890, p. 58; C. Crangz, CPvil-Ingenieur, 21 (1885), vol. 11.; F. Koétter, Verkandl. d.
Phys. Gesell. zw Berlin, 7 (1888), p. 17; C. Cranz and K. R. Koch, Minch. Akad.
Ber. 21 (1901), p. 572: Jakresber. d. deutsch. Matk. Vereinigung, 6 (1899), p. 118;
Minarelli-Fitzgerald, Das moderne Schiesswesen, Vienna, 1901, p. 55; F. Kotter,
Sitz.-Ber. d. Berl. Mathem. Gesell. 2 (1903), p. 65 ; C. Cranz, ditto, 3 (1904), p. 11;
J. C. F. Otto, Hilfsmittel fiir ballist. Rechnungen, Berlin, 1859, p. 266, who was
probably the first to suggest that the vibration of the bore was the cause of the
jump.

§3 50-60. Drift through the rotation of the shell, with cannon balls, and the
modern types of shell, together with vibratory movements of the projectile, are
referred to in the following papers. Didion, pp. 304 and 318, and J. ée. polyt. 16
(1839), p. 51; G. Piobert, Traité dartillerie, Paris, p. 169; Résal, 1, p. 375;
G. Magnus, Berl. Ber. 1852, 1-24, and Ann. Phys. Chem. 88 (1853), p. 1; P. de
St Robert, Mém. scient. Paris, 1872, 1. p. 277; M. de Sparre, Mouvement des pro-
Jectiles oblongs dans le cas du tir de plein fouet, Paris, 1875, and Sur le mouvement
des projectiles dans Uair, Paris, 1891 : Archiv f. Math. Astron. u. Phys. Stockholm,
1904, and dnn. de la socidté de Bruzelles, 35 (1911), p. 79; R. Timmerhans, Essai
dun traité dartillerie, 2, Paris, 1846, p. 113; J. C. F. Otto, Umdrehung der,
Artilleriegeschosse, Berlin, 1843 and 1847 : Allgemein. Militdrzeitung, 1846, Nos.
64-65, and Arch. f. Art.- w. Ing.-Of. 6 (1840), p. 118; J. P. G. v. Heim, p. 169
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Neumann, Arch. f. Art.- u. Ing.-Of. 6 (1838), p. 213: 14 (1842), p. 49, and 17
(1845), p. 193 ; C. Mondo, Derivation der Langgeschosse, Munich, 1860 ; V. v. Vieth,
Flugbahn der Geschosse, Dresden, 1861; C. H. Owen, Woolwich ftoy. Are. Inst.
Proc. 4 (1863), p. 180, and 23 (1869), p. 217 ; Brockhusen, Arch. f. Art.- u. Ing.-
Of. 15 (1843), p. 93 ; Rutzki, p. 169; W. v. Rouvroy, Theorie der Bewegung der
Spitzgeschosse, Berlin, 1862, and Arch. f. Art.- u. Ing.-Of. 18 (1845), p. 19;
Darapsky, Dertvation der Spitzgeschosse, Cassel, 1865; N. Mayevski, p. 178, and
DPetrog. Art. Journ. 1865, 3, p. 11, and Rev. technol. milit. 5,1865, p.1; P. Gauthier,
Mouvement dun projectile dans Uair, Paris, 1867 ; A. Paalzow, Uber die Drehung
Jester Korper, insbesondere der Geschosse und der Erde, Berlin, 1867; Kummer,
Berlin. Akad. Abk. 1875, p. 1 and 1876, p. 1; F. Astier, Kasai sur le mouvement
des projectiles oblongs, Paris, 1873; F. P. Jouffret, Rev. d'art. 4 (1874), pp. 243,
547; P. Haupt, Mathematische Theorie der Flugbahnen gezogener Geschosse, Berlin,
1876; J. Mirker, Uber das ballistische Problem, Gymn. Prog.,, Hersford, 1876;
Muzeau, Rev. d’art. 12 (1878), pp. 422 and 495, continued till 14, p. 38; Ingalls,
_ Handbook of Problems in Exterior Ballistics, New York, 1900: Arch. f. Art.- u.
Ing.-Off. 85 (1879), p. 134, and 87 (1880), p. 180; K. B. Bender, Bewegungser-
scheinungen d. Langgeschosse, Darmstadt, 1888 ; Jansen, Arck. f. Art.- u. [ng.-Of.
97 (1890), p. 424; Sabudski, Petrog. Art. Journ. 1890, 7, p. 649, and 1891, 1, p. 1:
Aussere Ballistik, 1895, pp. 323-393; A. Brix, Marine Abh. (Russian), 1891, No. 1,
p. 25: No. 2, p. 61: No. 3, p. 41; Engelhardt, Arch. f. Art.- w. Ing.-Off. 100 (1893),
pp. 403 and 449; P. G. Tait, Nature, 48 (1893), p. 202; H. Miiller, Entwicklung
der Feldart:lleme, Berlin, 1894 ; E. Okinghaus, Arch. f, Art.- u. Ing.-Off. 103 (1896),
p. 185; J. Altmann, Erklirung w. Berechnung d. Seitenabweichungen, Vienna,
1897; A. v. Obermayer, Organ der militirwissenschafilichen Vereine, Vienna,
1898, and Aitt. ih. Geg. d. Art.- u. Gén.- Wes. 1899, p. 869 ; A. G. Greenhill, Wool-
wich Roy. Art. Inst. Proc. 11 (1882), pp. 119 and 124 ; v. Minarelli, p. 43; Ludwig,
Studien iiber Ballistik, Carlsruhe, 1853; P. G. Tait, Trans. Roy. Soc. Edinb. 37
(2), (1893), p. 427, and Beiblitt. zu d. Annal. d. Phys. u. Chem. 4 (1893), p. 288:
Proc. Roy. Soc. 21 (1896), p. 116: Beiblitt. zu d. Annal. d. Phys. u. Chem. 21
(1897), p. 389 ; E. Roggla, Mitt. iib. Geg. d. Art.- u. Gen.- Wes. 1912, 4, p. 317 ;
Cranz, Zeitschr. f. mathem. Phys. 43 (1898), pp. 133 and 169: Ja/zresber d. deutschen
Math. Ver. 6 (1899), p. 110.

§ 50. Deflections of cannon balls. J. Didion and Saulcy, Cours dartillerie,
partie théorique, rédigd aprés Piobert, Paris, 1841; F. Otto, Uber die Umdrehung
der Artill. Geschosse, Berlin, 1843, p. 109, continued by Neisse, 1847 ; S. D. Poisson,
Recherches sur le mouvement des projectiles, Paris, 1839, p. 69: Uber die Luftreib-
ung, p. 74 ; A. Winkelmann, Handbuch der Physik, Breslau, 1891, 1, p. 600. For
tests with eccentric projectiles, see Heim, p. 169; Rouvroy, Arch. f. Art.- u. Ing.-
Of. 18 (1845), p. 19 ; H. Miiller, Die Rotation der runden Artilleriegeschosse, Berlin,

1862. Magnus’s experiments, Berlin. Akad. Abh. 1852, and Uber die Abweichung
der Geschosse, Berlin, 1860. For golf balls and boomerangs, see G. T. Walker,
Encykl. d. math. Wissensch.1v. 9 : referred to under the heading “Spiel und Sport,”
p- 135. Lanchester’s explanation will be found in his book on Aerodynamics.

§ 61. M. Hélie, 7raité de balistique, 1884, 11. p. 310. For observations of
projectiles with the naked eye, see Heydenreich, 1, p. 7, and 2, pp. 95-98; Rutzki,
Theorie w. Praxis der Geschoss- und Zinderkonstruktionen, Vienna, 1871; H. Miiller,
Die Entwicklung der preuss. Festungs- und Belagerungsartillerie, Berlin, 1876,
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p-162. For indirect observations, see Jansen, drch. f. Art.- u. Ing.-Of. 97 (1890),
Pp- 425 and 497. A photographic method of registration in the shell itself is given
by Neesen, Arck. f. Avt.- u. Ing.-Off. 96 (1889), p. 68: 99 (1892), p. 476: and 101
(1894), p. 253. Observations at low velocities, C. Cranz, Zettschr. f. math. Phys.
43 (1898), pp. 133 and 169.

§§ 52-57. For the theory of the gyroscope, see F. Klein and A. Sommerfeld,
Uber die Theorie des Kreisels, Leipsic, 1897-1910, specially vol. 1v. section C,
Ballistics, 8, p. 317 and P. Stéickel, Encyklop. d. math. Wissensck, 1v, 6, which in-
cludes a bibliography ; C. Cranz, Zeitschr. math. Phys, 43 (1898), pp. 133 and 169;
H. Putz, Rev. dart. 24 (1884), p. 293; K. B. Bender, Bewegungserscheinungen
der Langgeschosse, Darmstadt, 1888 ; Jansen, Arck. f. Art.- u. Ing.-Off. 97 (1890),
p. 424 ; H. Miiller, Die Entwickl. d. Preuss. Festungs-u. Belag. Artill. Berlin, 1876,
specially pp. 162 and 175. Gyroscopic experiments with models of shells, A. von
Obermayer, Mitt. ib. Geg. d. Art.- u. Gen.-Wes. 1899, p. 869 ; K. ¥. Harris, Journ.
of Un. 8t. Artill: 10 (1901), p. 63, and pp. 189 and 303 ; Magnus, Pogg. Ann. 88
(1853), p. 1; J. Altmann, Erkldrung u. Berechnung d. Seitenabweickung rotierender
Geschosse, Vienna, 1897 ; Krall, Mitt. @b, Geg. d. Art.- u. Gen.- Wes. 1888, p. 118 ;
C. V. Boys, ditto, 1897, p. 836.

Photographic measurements of vibratory movements are described by F.
Neesen, Verkandl. d. deutsch. physikal. Gesell. 11 (1909), 24, pp. 441 and 724.

§ 52, Layriz, Zeitschr. f. d. ges. Schiess.- u. Sprengstoff.- Wes. 10 (1915), p. 303 ;
Jansen, Arck. f. Art.- u. Ing.-Off. 97 (1890), pp. 424 and 497, and Mitt. iib. Geg.
d. Art.- u. Gen.-Wes. 1871, p. 85 ; A. Rutzki, p. 62 and Grundlagen fiir neue
Geschoss.- u. Waffensysteme, Teschen, 1876.

§ 53. A. Dahne, Neue Theorie der Flugbahnen von Langgeschossen, Berlin,
1888 Bausterne zur Flugbahn- u. K ezseltkeone, Berlin, 1914, by the same author,
as also Kriegstechn. Zeitschr, 10 (1907), pp. 65 and 265, and 12 (1909), p. 58.

§ 55. A. v. Rutzki, Bewegung u. Abweichung der Spitzgeschosse, Vienna, 1861,
and Theorie u. Prazis der Ziinderkonstruktionen, Vienna, 1871; Jansen, Arch. f.
Art.- w. Ing.-Of. 97 (1890), pp. 425 and 497 ; N. Sabudski, Untersuchungen ib. d.
Bewegungen des Langgeschosses, Petrograd, 1908; T. Terada and M. Okochi, drt:ll.
Monatshefte, 1909, p. 301; A, Dittli, Artill. Monatshefte, 1916, 116, p. 49,

§ 56. Hélie, 2, pp. 94 and 309 ; E. Vallier, Bal. exp. Paris, 1894, pp. 40 and
178 ; G. v. Gleich, Zeitschr. f. Math. u. Phys. 55 (1907), p. 363 ; F. H. Lanchester,
Aerodynamics, and E. Bravetta, Zeitschr. f. d. ges. Schiess.- . Sprengstoff.- Wes. 6,
1911, pp. 81 and 107: ditto, 1914, p. 291; A. Hamilton, Ballistics, Fort ’\Ionroe,.
1908, 1. p. 155; P. Haupt, Mathem. Theorie der Flugbakhnen, Berlin, 1876, p. 101; :
Charbonnier, Zraité de bal. ext. Paris, 1894, p. 238.

For lateral deviations, see E. Thiel, Das Inf. Gew. Bonn, 1883, p. 20;
H. Rohne, Schiesslehre fiir Infanterie, Berlin, 1906, p. 182. Krause says it amounts
to 1 metre in a ranée of 1000 m with the rifle M. 88, Militdr. Wockenblatt, 1904,
113, p. 2737 ; Wille, Waffenlehre, Berlin, 1908, 1v. p. 231.

§ 57. Demonstration apparatus, M. J. Perrodon, Sur un apparel destiné...,
Paris, 1875. Pfaundler’s apparatus is described in Klimpert’s Dynamik, Stuttgart,
1889 ; Majneri-Kempen, Artill. Monatshefte, 1913, 76, p. 299.

§§ 58-70. For the theory of probabilities, see E. Czuber, Wakrsch.-Rechnung
u. thre Anwendung auf Fehlerausgleichung, Leipsic, 1903: ditto, T%eorie d. Beo--
bachtungsfehler, Leipsic, 1891: Jakresber. d. deutsch. Math. Verein. 7 (1899), 2,
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pp. 1-279, with" bibliography ; N. Sabudski, Die Wakrecheinlickbeitsrecknung,
translated by Eberhard, Stuttgart, 1906; J. Kozdk, Grundprobleme der Aus-
gleichsrechnung, Leipsic, 1907-08, For the characteristic errors, see 8. Wellisch,
AMiee. wb. Geg. d, Art.- u. Gen.- 1Ves. 1908, pp. 889 and 975 ; J. Kozék,ditto, 1910, p. 47.

§ 60. 8. D. Poisson, Mém. de Uurt. de la marine, 8 (1830), p. 141; J. Didion,
Caleul des probabilités appliqué aw tir des projectiles, Paris, 1858, and J. éeol.
polyt. 16, cah. 27 (1839), p. 51 ; Hélie, 2, p. 95; v. Wuich, p. 481 ; Eschler, Vortrige
a. d. Artill.- Lehre, Vienna, 1898 ; Fischer, Ariegatechn. Zeitachr, 1909, pp. 164 and
209 ; B. Schoffler, Mtz ith. Geg. d. Art.- u. Gen.- Wes. 1901, p, 823, and 1902, pp. 97
and 366 ; J. U, van Loon, Mitt. 4b. Geg. d. Art.- u. Gen,- Wes. 1914, pp. 249, 735, 875,

Cranz, Komp. d. Ball,, Leipsic, 1896, p. 297; W. Dyck, Kataloy mathem, u,
math. phys. Modelle, Munich, 1892, p. 154; A. v, Obermayer, Mit. b, Gey. d.
Art.- w. Gen.- Wes. 1899, p. 130, and 1900, 2, notes.

§ 62. For the method of successive differences, sece E. Czuber, Jukresber, d.
deutsch. Math. Ver. 7 (1899), 2, p. 205; E. Vallier, p. 166 ; Sabudski’s work on
probabilitics refers to Eberhard’s proposals; W. Heydenreich, Zeitsehr. f. d. ges.
Schiess.- u. Spreng.- Wes, 1 (1906), p. 272.

§ 65. Vallier, p. 160 and Rev. dart. 9 (1877), p. 222; E. Czuber, Jahresber, d.
deutsch. Math. Verein. 7 (1899), 2, p. 212; W. Heydenreich, Kriegstechn. Zeitschr.
6 (1903), p. 2063 ; A. Mazzuoli, 2ivista maritima, 1908, January ; H. Rohne, Art:ll.
Monatshefte, 1907, 9, p. 235, and 32, p. 129; J. Kozdk, Mitt. ib. Geg. d. Art.- u.
Gen.- Wes. 1910, p. 47.

§ 66. F. Siacci, Rev. dart. 22 (1883), p. 521 and ditto, 24 (1884), p. 445;
H. Putz, ditto, 24 (1884), pp. 5 and 105: 32 (1888), pp. 213 and 313.

§ 67. Krause, Die Gestaltung der Geschossgarbe, Berlin, 1904 ; von Zedlitz,
Kriegstechn. Zeitschr. 6 (1903), p. 129; H. Rohne, Schiesslekre f. Infanterie, Berlin,
1906 ; v, Minarelli, pp. 65 and 82; K. Endres, Arck. f. Art.- w. Ing.-Off. 90 (1883),
p. 113; A, Percin, Rev. d'art. 20, 1882, p. 5; Giletta, Riv. d’ art. e gen. 1884,
P. 218; Parst, Ariegstechn. Zeltschr. 4 (1901), p. 330, and 7 (1902), p. 235;
H. Rohne, ditto, 4 (1901), p. 119; Artillerist, Monatshefte, 1907, pp. 232, 257, 397 ;
Schiesslehre fiir Infanterie, Berlin, 1906, specially p. 139.

The theory of finding the range for artillery is described by Rohne, Areh. f.
Art.- u. Ing.-Off. 100 (1894), pp. 385 and 481, and 102 (1895), pp. 64 and 257, and
specially 104 (1897), p. 172: Kriegstechn. Zeitschr. 1 (1898), pp. 209 and 399, and
2 (1899), p. 115; Callenberg, Uber die Grundlugen des Schrapnellschiessens bei der
Feldartillerie, Berlin, 1898, and Kriegstechn. Zeitschr. 2 (1899), pp. 27 and 93;
Preiss, Kriegstechn. Zeitschr. 3 (1900), p. 81; E. Strnad, Mt itb. Geg. d. Art.- u.
Gen.- Wes, 1892, p. 879: 1887, p. 375; A. Weigner, ditto, 1898, p. 821; Schofller,
ditto, 1902, p. 97: 1900, p. 429 and 1901, p. 823; N. Sabudski, Wakrsch.-Rechn.
Stuttgart, 1906; J. Kozdk, Theorie, der Schiesswesens, vol. 11. part 2, Vienna, 1900;
E. Eschler, Vortrige aus der Artillerielefire, Vienna, 1898,

Vallier, Rev. dart. 30 (1887), p. 106; V. Gandolfi, Riv. & art. e gen. 1896,
vol. 1v, p. 231, and Jitt. #b. Geg. d. Art.- u. Gen.-Wes. 1897, p. 645; E. Strnad,
ditto, 1897, p. 763; Indra, ditto, 1897, pp. 163 and 291; A. Ludwig, ditto, 1901,
pp. 91 and 189; A, Calichiopulo, Riv. & art. e gen. 1893, vol. L pp. 245 and 411;
Dragas, Strefileur’s sterr. milit. Zeitschr. Vienna, 1890, p. 184,

§ 69. R. Rothe, Artill. Monatshefte, 1916, 110, p, 65, and 111, p. 125;
G. Scheflers, Berlin. Akad. Ber., Phys.-math. K. 42 (1915), p. 733.
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§ 70. Kohlrausch, Prakt. Phys. Leipsic, 1901, p. 17; E. Vallier, Bal. expér.
Paris, 1894, pp. 138 and 151. '

§§ 71-75. Didion, p. 228; Siacci, p. 142; N, Persy, Cours de balistique, Metz,
1827 ; Résal, Paris, C. R. 120 (1895), p. 397; H. C. Schumm, Jour. Un. St. Art.
4 (1895), p. 620; M. de Brettes, Paris, C. R. 75 (1872), p. 1702, and 76 (1873),
p. 278; G. Kaiser, Mitt. 4b. Geg. d. Art.- u. Gen.- Wes. 1885, p. 171; C. Parodi,
Riv. & art. e gen. 1887, 1, p. 42; E. P. Jouffret, Les projectiles, Fontainebleau, 1881,
p. 142; G. Ronca, La corrisp. 1 (1900), p. 16; E. Vallier, ditto, 1 (1900), p. 200;
Mayevski, Rev. d. technol. milit. 1866, 5, and 1867, 6; Vallier, p. 220, and Paris,
C. R. 120 (1895), p. 136; Heydenreich, 1, p. 8; v. Wuich, Mitt. itb. Geg. d. Art.-u.
Gen.- Wes, 1893, pp. 1 and 161 ; H. Putz, Rev. dart. 34 (1889), pp. 138 and 193;
Sabudski, 1, pp. 394-420.

R. Robins, Nouveaur principes dartillerie (French translation by Lombard),
Paris, 1873, p. 365; Poncelet, Introduction & la mécanique industrielle, Brussels,
1839, p. 619; Résal, Paris, €. R. 120 (1895), p. 397; T. Levi-Civita, d¢ti del reale
istituto Veneto di Scienze, 65 (1905), 11. p. 1149.

§ 72. v. Minarelli, p. 143, and Wille, Waffenlekre, Berlin, 1900, p. 173; Wer-
nicke, Zeitschr. f. d. ges. Schiess.- u. Sprengst.- Wes. 1910, p. 201.

A. Preuss, Schuss u. Waffe, 2 (1908-9), 24, p. 577: 3 (1909-10), 2, p. 41:
5 (1911-12), 19, p. 376: 3 (1909-10), 1, p. 5: 3 (1909-10), 9, p. 185.

For the amount of energy needed to put a man or horse out of action, see
H. Rohns, Schiesslehre f. Infant. Berlin, 1906, p. 68, and Arzill. Monatshefte, 1908,
p. 197; J. Pangher, Mitt. 4b. Geg. d. Art.- . Gen.- Wes. 1909, p. 615; A. Nobile
de Giorgi, ditto, 1911, 10, p. 891: 11, p. 1003: 12, p. 1111: 1912, pp. 1 and 12.

On armour-piercing shells, see Bahn, Artill. Monatsheft. 1910, 11. p. 401;
R. Veit, Mitt. 4b. Geg. d. Art.- u. Gen.-Wes. 1912, pp. 112 and 235 ; Clarke, Tke
Nawval Annual, 1913, p. 363; Tressider, Trans. Inst. Nav. Arch. 1908 vol. 1.
Sunger, Kruppsche Zementpanzer u. Kappengeschosse, Kattowitz, 1907 ; l\hmey,
Rev. dart. 89 (1911), vol. LxxvIIL p. 209; Journée, Rev. dartell. 72 (1908), p. 105.

§74. A.v. Obermayer, Mitt. iib. Geg. d. Art.- u. Gen.- Wes. 1898, p. 361 ; Medical
section of Prussian War Office, Uber die Wirkung der newen Handfeuverwaffen,
Berlin, 1894 ; E. Rink, Rev. dart. 25 (1885), p. 550; v. Minarelli, p. 41; C. Cranz
and K. R. Koch, dnn. d. Phys. w. Chem. 4, 3 (1900), p. 247: Mitt. iib. Geg. d.
Art.- w. Gen.- Wes. 1903, p. 477; Cranz and Giinther, Zeitschr. f. d. ges. Schiess.- u.
Sprengst.- Wes. 1912, p. 317 ; H. Lehmann, Die Kinematographie, Leipsic, published
by Teubner, 1911, p. 112; Curschmann, Zeitschr. f. d. ges. Schiess.- w. Sprengst.-
Wes. 10 (1915), p. 123; A. Preuss, Schuss u. Waffe, 3 (1909-10), 17, p. 349 : ditto,
6 (1913), pp. 421 and 441, by Hiibener, and 7 (1914), pp. 281, 297, 317, 337, 357,
by E. Broer; E. Bircher, Kriegschirurg. Hefte der Beitrige zur Klinischen Chi-
rurgie, 96 (1915), 1, p. 38.

Cranz, Zeztsclw', ‘Schuss u. Traffe, 2 (1909), 18, p. 413; Wieting, Militir-
arztliche Zeitschr. 38 (1909), 15, p. 617; A. Breuver, Mitt. ib. Geg. d. Artill.- u.
Gen.- Wes. 1907, p. 671.

§75. E. de Jonquibres states that balls of a calibre of 0'16 m, having a velocity
of 455 m/sec, ricochetted on an average 22 times on the surface of the water:
range=2470 m ; Persy, Cours de balistique, Metz, 1827, p. 61; A. Preuss, Schuss
u. Waffe, 3 (1909-10), 10, p. 217, and 4 (1910-11), 11, p. 213; C. Ramsauer, Uber
den Ricochetschuss, Kiel dissertation, 1903.
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Accuracy of calculations, 198
" fire, 388

Aerial ballistics, 6, 227, 291, 294
Aeroplane, firing at, 227

" ,, from, 294
Air resistance, 31, 44

" » lawsof, 88, 44, 46, 104, 109,

113, 118

Air waves, 32
Angular velocity of shells, 336
Armour plating, 466
August shell head, 75

Ballistic coefficient, 88
”» problem, 89
Bomb dropping, 291

Circular targets, 412
Conical angle of burst, 434
Curvature of Earth, 22

Density of air, 82

Deviation of projectiles, 269, 278, 279, 300,
306, 308

Dum-dum bullets, 442

. Eccentric projectiles, 308
Explosive effects, 434, 441

Factors, ballistic, 152
Families of trajectories, 3
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THE INSTANTANEOUS PHOTOGRAPHIC RECORDS
Record No. 1.

This shows a bullet of a calibre of 8 mm, together with the surrounding waves
and eddies: v=880 m/sec. This was taken with a concave mirror, and a vertical
stop, which was placed at right angles to the path of the bullet. The method is
described in vol. 1L chap. viIL. and by B. Glatzel in Die elektrischen Methoden
der Momentphotographie, Brunswick, 1915, published by Vieweg. This method
shows the variations of air-density, in directions at right angles to the stop. The
photograph can be regarded as a model, illuminated in a direction at right angles
to the stop, and a model of this kind was made in the author’s laboratory in
plaster of Paris.

Record No. 2.

Asin No. 1, but the edge of the stop is parallel to the line of fire, corresponding
to an illumination of the model in a direction at right angles to the path of the
bullet.

Record No. 3. ] _ i ] ) ‘

Bullet of 8 mm calibre: ¥==880 m/sec. This was taken by the shadow pro-
cess. :
Record No. 4.

As in No. 1, but the bullet was fired with the base forward. The line of flight
is slightly oblique to the position of the bullet.

Recard No. 5.

Cylindrical projectile, flying through calm air: =880 m/sec. This was taken
with concave mirror, objective and stop: the position of the stop corresponds to
an illumination in a direction parallel to the line of fire.

Record No. 6.

Cylindrical projectile with rounded tip: »=640 m/sec. The angle of the head-
wave is increased accordingly.

Record No. 7.

This shows the beginning of the wave with a pointed bullet of 8 mm calibre :
»=880 m/sec. The gases, which escaped from the muzzle, had initially had
a greater velocity than the bullet, but at the moment the exposure was made,
they had been overtaken by the bullet. The bounding line of the escaping gases
is here seen to be somewhat irregular. The head-wave begins to form just outside
the explosive gases, because, relatively to these latter gases, the bullet has a
velocity less than that of sound. This was taken by the shadow process.

Record No. 8.

Pointed bullet, 8 mm calibre : ¥=340 m/sec. This is the velocity of sound.
As the velocity of the bullet decreases, the points of the head-wave and tail-wave
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move with regard to the bullet forwards or backwards. The angle of the waves
increases at the same tine. And when the velocity of the bullet has fallen below
that of sound, the waves become separated from the bullet, The head-wave
becomes a kind of spherical condensation.

Record No. 9.

Bullet, 8 mm calibre: =880 m/sec. The bullet has grazed a wooden board,
and ig vibrating noticeably. Splinters of wood are seen.

Record No. 10.

This proves that the head-wave and the tail-wave are the envelopes of infini-
tesimally small head-waves, which are produced by the impact of the bullet on
the surrounding air. In the records 1-9, these clementary waves are scarcely
visible, though they can sometimes be seen within the tail-wave.

The waves can be separated, as in the present record, by firing through
a horizontal tube, which has holes at top and bottom: v=880 m/sec. The bullet
is seen to be emerging from the tube, Partial waves escape through the holes in
the tube and their method of combining to form an envelope can be scen. Taken
by the shadow process.

Record No. 11.

As in No. 10, taken by concave mirror, objective and stop. The bullet has
already left the field of view.

Record No. 12.

Shows the beginning of the head-wave: »=880 m/sec. By means of a sound-
damping device, attached to the muzzle, the head-wave starts as soon as the bullet
escapes from the muzzle. Taken by the shadow process.

Record No. 13.

This shows the reflection of the waves from two parallel plates, between wh:ch
the bullet passes: »=880 m/sec. Taken by the shadow process.

Record No. 14.

Asin No. 12, but taken at a later instant. The bullet has already escaped at
the right. There seems to be trace of periodicity in the eddies: these eddies
would be helical, on account of the rotation of the bullet. Probably here it is
a case of variations of air-density, due mainly to temperature.

Record No. 15.

A bullet fired through two candle-flames: »=880 m/sec. Both flames were
extinguished. The record shows (a) the inertia of the burning gases, sceing that
the flame through which the bullet has already passed appears to be burning
quietly, and the ascending column of hot gases is not disturbed. (b) No kind of
perceptible pressure seems to precede the bullet, even when its velocity exceeds
that of sound. (¢) The waves, shot out from the flame, appear to be separate
waves, just as though the bullet had passed through a solid body. These waves
appear to be transplanted faster in the hot gases of the flame than in the cool
surrounding air. A

All these records were taken in the author’s laboratory.
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